首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Originally, the Carnot cycle was a theoretical thermodynamic cycle that provided an upper limit on the efficiency that any classical thermodynamic engine can achieve during the conversion of heat into work, or conversely, the efficiency of a refrigeration system in creating a temperature difference by the application of work to the system. The first aim of this paper is to introduce and study the economic Carnot cycles concerning Roegenian economics, using our thermodynamic–economic dictionary. These cycles are described in both a QP diagram and a EI diagram. An economic Carnot cycle has a maximum efficiency for a reversible economic “engine”. Three problems together with their solutions clarify the meaning of the economic Carnot cycle, in our context. Then we transform the ideal gas theory into the ideal income theory. The second aim is to analyze the economic Van der Waals equation, showing that the diffeomorphic-invariant information about the Van der Waals surface can be obtained by examining a cuspidal potential.  相似文献   

2.
A geometrical formulation of estimation theory for finite-dimensional C-algebras is presented. This formulation allows to deal with the classical and quantum case in a single, unifying mathematical framework. The derivation of the Cramer–Rao and Helstrom bounds for parametric statistical models with discrete and finite outcome spaces is presented.  相似文献   

3.
Information Geometry is a useful tool to study and compare the solutions of a Stochastic Differential Equations (SDEs) for non-equilibrium systems. As an alternative method to solving the Fokker–Planck equation, we propose a new method to calculate time-dependent probability density functions (PDFs) and to study Information Geometry using Monte Carlo (MC) simulation of SDEs. Specifically, we develop a new MC SDE method to overcome the challenges in calculating a time-dependent PDF and information geometric diagnostics and to speed up simulations by utilizing GPU computing. Using MC SDE simulations, we reproduce Information Geometric scaling relations found from the Fokker–Planck method for the case of a stochastic process with linear and cubic damping terms. We showcase the advantage of MC SDE simulation over FPE solvers by calculating unequal time joint PDFs. For the linear process with a linear damping force, joint PDF is found to be a Gaussian. In contrast, for the cubic process with a cubic damping force, joint PDF exhibits a bimodal structure, even in a stationary state. This suggests a finite memory time induced by a nonlinear force. Furthermore, several power-law scalings in the characteristics of bimodal PDFs are identified and investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号