首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trace amounts of explosives on solid surfaces were detected by mass spectrometry at ambient conditions with a new technique termed dielectric barrier discharge ionization (DBDI). By the needle-plate discharge mode, a plasma discharge with energetic electrons was generated, which could launch the desorption and ionization of the explosives from solid surfaces. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 2,4,6-trinitrotoluene (TNT), and pentaerythritol tetranitrate (PETN) were desorbed directly from the explosives-contaminated surface by DBDI, forming the typical anions of [TNT](-), [TNT - H](-), [RDX + NO(2)](-), [PETN + ONO(2)](-), and [RDX + ONO(2)](-). The ions were transferred into the MS instrument for analysis in the negative ion mode. The detection limit of present method was 10 pg for TNT (m/z 197, S/N 8 : 1), 0.1 ng for RDX (m/z 284, S/N 10 : 1), and 1 ng for PETN (m/z 260, S/N 12 : 1). The present method allowed the detection of trace explosives on various matrices, including paper, cloth, chemical fiber, glass, paints, and soil. A relative standard deviation of 5.57% was achieved by depositing 100 pg of TNT on these matrices. The analysis of A-5, a mixture of RDX and additives, has been carried out and the results were consistent with the reference values. The DBDI-MS method represents a simple and rapid way for the detection of explosives with high sensitivity and specificity, which is especially useful when they are present in trace amounts on ordinary environmental surfaces.  相似文献   

2.
基于离子迁移谱的爆炸物探测仪多采用放射性电离源,发展非放射性电离源一直是该技术的研究热点。本研究基于电晕放电原理设计了一种新型负电晕放电电离源结构,结合自行研制的离子迁移谱仪,应用于痕量爆炸物的快速、高灵敏检测。单向气流模式下,对此电离源的气流、放电电压等运行参数进行了系统优化,得到最佳实验条件为:电晕放电电离源结构的电极环孔直径为3 mm,针-环距离为2 mm,放电电压为2400 V,漂气流速为1200 mL/min。在此条件下,避免了放电副产物氮氧化物和臭氧等引发的一系列复杂反应,得到了单一的反应试剂离子O-2(H2O)n。将其应用于爆炸物,如2,4,6-三硝基甲苯(TNT)、硝酸铵(AN)、硝化甘油( NG)、太安( PETN)、黑索金( RDX)等的高灵敏快速直接检测,对TNT的检测限达到200 pg/μL。结果表明,此负电晕放电电离源具有灵敏度高、结构简单、无辐射性、反应试剂离子单一等优点,在爆炸物快速高灵敏检测、公共安全保障等方面具有广阔的应用前景。  相似文献   

3.
张四纯  张新荣 《中国科学:化学》2014,(5):32-34,683,686
敞开式离子化质谱可对表面样品进行直接快速分析而受到关注,成为质谱分析的热点研究方向.介质阻挡放电离子源是一种基于等离子体放电机理的敞开式离子源,近年来得到了较快的发展.本文着重介绍该离子源的基本原理、性能特征以及应用进展,并对其发展趋势进行了展望.  相似文献   

4.
基于新型介质阻挡放电离子源的药物快速检测方法研究   总被引:1,自引:0,他引:1  
本研究将单电极放电技术的DBDI与质谱(MS)联用,快速检测了4种低极性的合成药物,结果表明,4种合成药物主要生成[M+H]+分子离子.此外还利用DBDI-MS对草乌、制草乌切片进行快速分析,在草乌中检测到乌头碱、中乌头碱、脱氧乌头碱的[M+H]+离子,以及[M+H-60]+碎片离子;在制草乌中只检测到乌头碱、中乌头碱、脱氧乌头碱的[M+H-60]+碎片离子.所测草乌中的标志性药效成分主要为双酯类生物碱,制草乌中的标志性药效成分主要为单酯类生物碱.新型DBDI为药物研究提供了一种新的、快速检测方法,具有十分重要的理论和实际应用意义,在药物研究领域具有极大的应用潜力.  相似文献   

5.
尿液作为一种易于获取的体内毒品检材,在吸毒人员快速筛查中被广泛应用。针对传统快速筛查技术存在假阳性率高、定量能力不足以及实验室质谱技术在快速检测中存在前处理复杂、检测耗时长、使用环境苛刻等问题,该文提出了一种基于敞开式直接电离质谱技术的生物样本快速检测方法。该研究采用探针式电喷雾离子源与便携式质谱仪联用快速检测平台,优化了喷雾电压和质谱入口毛细管温度,开发了高效快速的前处理技术。基于该平台和前处理技术,5种常规毒品(甲基苯丙胺、氯胺酮、可卡因、O^(6)-单乙酰吗啡和3,4-亚甲双氧甲基苯丙胺)的尿液加标溶液的检出限为0.5~30 ng/mL,且其中4种毒品定量检测的线性相关系数大于0.99。除此之外,5种常规毒品在3个不同水平下的加标回收率为56.1%~103.7%,多次检测结果的相对标准偏差为9.0%~27.8%,说明联用检测平台与前处理方法结合可以达到良好的准确度。为了进一步检验该联用仪器的实战能力,测试了某社区戒毒康复中心40份阳性和110份阴性实际尿液样本,总体检测的准确率接近99%,且通过一次进样在20 s内可同时检测多种毒品。该研究成果有利于推动快速检测技术的发展,促进敞开式直接电离质谱仪技术的推广应用,提升一线执法服务水平。  相似文献   

6.
A radiofrequency (rf) powered planar magnetron glow discharge ion source has been designed and coupled to a double-focusing mass spectrometer. Superposition of the electrical field of the plasma in the cathode dark space and the magnetic field obtained from a ring-shaped magnet located directly behind the sample (cathode) form the electron traps and enhance the sputtering and ionization efficiency of the ion source. In order to establish optimum conditions for the trace analysis of nonconducting materials, mass spectrometric studies have been carried out on the ion signal intensities and energy distributions of analyte and discharge gas ions depending on pressure.  相似文献   

7.
A radiofrequency (rf) powered planar magnetron glow discharge ion source has been designed and coupled to a double-focusing mass spectrometer. Superposition of the electrical field of the plasma in the cathode dark space and the magnetic field obtained from a ring-shaped magnet located directly behind the sample (cathode) form the electron traps and enhance the sputtering and ionization efficiency of the ion source. In order to establish optimum conditions for the trace analysis of nonconducting materials, mass spectrometric studies have been carried out on the ion signal intensities and energy distributions of analyte and discharge gas ions depending on pressure.  相似文献   

8.
A novel air-tight neutral desorption enclosure has been fabricated to noninvasively sample low picograms of explosives 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine (HMX), triacetone triperoxide (TATP), and nitroglycerin (NG) from human skin using a neutral nitrogen gas beam. Without further sample pretreatment, the explosive mixtures collected from the skin surface were directly transported by a nitrogen carrier gas over a 4-m distance for sensitive detection and rapid identification by extractive electrospray ionization tandem mass spectrometry.  相似文献   

9.
The high‐sensitive detection of explosives is of great importance for social security and safety. In this work, the ion source for atmospheric pressure chemical ionization/mass spectrometry using alternating current corona discharge was newly designed for the analysis of explosives. An electromolded fine capillary with 115 µm inner diameter and 12 mm long was used for the inlet of the mass spectrometer. The flow rate of air through this capillary was 41 ml/min. Stable corona discharge could be maintained with the position of the discharge needle tip as close as 1 mm to the inlet capillary without causing the arc discharge. Explosives dissolved in 0.5 µl methanol were injected to the ion source. The limits of detection for five explosives with 50 pg or lower were achieved. In the ion/molecule reactions of trinitrotoluene (TNT), the discharge products of NOx? (x = 2,3), O3 and HNO3 originating from plasma‐excited air were suggested to contribute to the formation of [TNT ? H]? (m/z 226), [TNT ? NO]? (m/z 197) and [TNT ? NO + HNO3]? (m/z 260), respectively. Formation processes of these ions were traced by density functional theory calculations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A new ion source based on dielectric barrier discharge was developed as an alternative ionization source for ambient mass spectrometry. The dielectric barrier discharge ionization source, termed as DBDI herein, was composed of a copper sheet electrode, a discharge electrode, and a piece of glass slide in between as dielectric barrier as well as sample plate. Stable low-temperature plasma was formed between the tip of the discharge electrode and the surface of glass slide when an alternating voltage was applied between the electrodes. Analytes deposited on the surface of the glass slide were desorbed and ionized by the plasma and the ions were introduced to the mass spectrometer for mass analysis. The capability of this new ambient ion source was demonstrated with the analysis of 20 amino acids, which were deposited on the glass slide separately. Protonated molecular ions of [M + H](+) were observed for all the amino acids except for L-arginine. This ion source was also used for a rapid discrimination of L-valine, L-proline, L-serine and L-alanine from their mixture. The limit of detection was 3.5 pmol for L-alanine using single-ion-monitoring (SIM). Relative standard deviation (RSD) was 5.78% for 17.5 nmol of L-alanine (n = 5). With the advantages of small size, simple configuration and ease operation at ambient conditions, the dielectric barrier discharge ion source would potentially be coupled to portable mass spectrometers.  相似文献   

11.
A modified atmospheric pressure chemical ionization ion source is applied for direct analysis of volatile or low volatile organic compounds in air. The method is based on the direct introduction of the analytes in the gas phase and/or particle phase into the ion source of a commercial ion-trap mass spectrometer. Two methods are employed for the production of primary ions at atmospheric pressure, photoionization and corona discharge. It is shown that in the presence of a dopant, photoionization can be a highly efficient ionization method also for real-time analysis with detection limits for selected analytes in the lower ppt-range. Using corona discharge for the production of primary ions, which is instrumentally easier since no additional chemicals have to be added to the sample flow, we demonstrate the analytical potential of on-line atmospheric pressure chemical ionization mass spectrometry for reaction monitoring experiments. To do so, an atmospherically relevant gas phase reaction is carried out in a 500 l reaction chamber and gaseous and particulate compounds are monitored in the positive and negative ion mode of the mass spectrometer.  相似文献   

12.
近年来常压敞开式离子源凭借快速、原位、实时离子化样品等优势,被广泛应用于样品快速筛查、真伪鉴定、质谱成像等领域,已成为当今离子源的研究热点,受到了学术界及仪器制造、化学和生物分析等相关产业界的广泛关注。目前,该类离子源朝着克服基体效应、提高样品表面定位能力及增加离子传输距离等方向发展。本文主要介绍了可以很好解决上述问题并具有代表性的三种常压敞开式离子源:电喷雾萃取离子源(EESI)、介质阻挡放电离子源(DBDI)及空气动力辅助离子源(AFAI),重点涉及原理以及在此基础上所做的设计改进和应用进展。  相似文献   

13.
In this work we evaluate the influence of thermal desorber temperature on the analytical response of a swipe-based thermal desorption ion mobility spectrometer (IMS) for detection of trace explosives. IMS response for several common high explosives ranging from 0.1 ng to 100 ng was measured over a thermal desorber temperature range from 60 °C to 280 °C. Most of the explosives examined demonstrated a well-defined maximum IMS signal response at a temperature slightly below the melting point. Optimal temperatures, giving the highest IMS peak intensity, were 80 °C for trinitrotoluene (TNT), 100 °C for pentaerythritol tetranitrate (PETN), 160 °C for cyclotrimethylenetrinitramine (RDX) and 200 °C for cyclotetramethylenetetranitramine (HMX). By modifying the desorber temperature, we were able to increase cumulative IMS signal by a factor of 5 for TNT and HMX, and by a factor of 10 for RDX and PETN. Similar signal enhancements were observed for the same compounds formulated as plastic-bonded explosives (Composition 4 (C-4), Detasheet, and Semtex). In addition, mixtures of the explosives exhibited similar enhancements in analyte peak intensities. The increases in sensitivity were obtained at the expense of increased analysis times of up to 20 seconds. A slow sample heating rate as well as slower vapor-phase analyte introduction rate caused by low-temperature desorption enhanced the analytical sensitivity of individual explosives, plastic-bonded explosives, and explosives mixtures by IMS. Several possible mechanisms that can affect IMS signal response were investigated such as thermal degradation of the analytes, ionization efficiency, competitive ionization from background, and aerosol emission.  相似文献   

14.
A radiofrequency (rf) spark discharge in vacuum developing across the surface of dielectrics – a so-called gliding spark – has been applied to the direct mass spectrometric trace analysis of nonconducting materials. The special configuration of the electrodes strengthened the electric field over the surface of a nonconducting sample and created optimum conditions for the sputtering and ionization of the sample material. Mass spectrometric investigations of the charge composition of atomic ion and molecular ion formation in radiofrequency gliding spark plasma showed a significant difference to that of the original rf spark discharge between two conducting electrodes. The analytical figures of merit (reproducibility, relative sensitivity factors and detection limits of chemical elements) of gliding spark source mass spectrometry have been studied by using the glass standard reference materials NIST SRM 610 and 611 for the determination of trace elements in glass matrix.  相似文献   

15.
A glow discharge chemical ionization (CI) source equipped with a pneumatic nebulizer for sample introduction has been constructed. A comparative study of the discharge CI and conventional CI by electron impact from a hot filament is made for various polar compounds using oxygen-containing reagents such as water and methanol. The potential utility of the discharge ion source to liquid chromatography/mass spectrometry is also discussed.  相似文献   

16.
《Analytical letters》2012,45(11):1440-1446
A small low-temperature plasma (LTP) ionization probe was coupled to a portable mass spectrometer for the rapid detection of trace explosives on surfaces. Using only a small diaphragm pump to supply ambient air to the LTP source, 100 ng each of pentaerythritol tetranitrate (PETN), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and 2,4,6-trinitrophenylmethylnitramine (Tetryl) were detectable on glass in under 1 minute. The main ion signal from these molecules (M) is the [M + NO3]? species. While much optimization remains, it is believed that this miniature LTP source will remove the need for external gas cylinders and additional heating for in situ explosives detection using portable mass spectrometers.  相似文献   

17.
常压电离质谱技术(Ambient ionization mass spectrometry,AIMS)以其敞开式环境、简便操作、原位、实时、高通量等优势,成为公共安全化学毒物检测领域的研究热点.该文基于文献计量分析,简要概述了AIMS的分类、发展趋势及其在公共安全化学毒物检测领域的发展现状,重点从检测灵敏度、样品前处理...  相似文献   

18.
Helium Plasma Ionization (HePI) generates gaseous negative ions upon exposure of vapors emanating from organic nitro compounds. A simple adaptation converts any electrospray ionization source to a HePI source by passing helium through the sample delivery metal capillary held at a negative potential. Compared with the demands of other He‐requiring ambient pressure ionization sources, the consumption of helium by the HePI source is minimal (20–30 ml/min). Quantification experiments conducted by exposing solid deposits to a HePI source revealed that 1 ng of 2,4,6‐trinitrotoluene (TNT) on a filter paper (about 0.01 ng/mm2) could be detected by this method. When vapor emanating from a 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX) sample was subjected to helium plasma ionization mass spectrometry (HePI‐MS), a peak was observed at m/z 268 for (RDX●NO2)?. This facile formation of NO2? adducts was noted without the need of any extra additives as dopants. Quantitative evaluations showed RDX detection by HePI‐MS to be linear over at least three orders of magnitude. TNT samples placed even 5 m away from the source were detected when the sample headspace vapor was swept by a stream of argon or nitrogen and delivered to the helium plasma ion source via a metal tube. Among the tubing materials investigated, stainless steel showed the best performance for sample delivery. A system with a copper tube, and air as the carrier gas, for example, failed to deliver any detectable amount of TNT to the source. In fact, passing over hot copper appears to be a practical way of removing TNT or other nitroaromatics from ambient air. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The use of capillary column gas chromatography and gas chromatography/mass spectrometry for the analysis of a series of standard solutions (0.1 to 10 μg/ml) of 2,4,6-trinitrotoluene (TNT) and eight other nitroaromatic components was evaluated. The techniques included gas chromatography with electron capture detection (GC/ECD), full scan and selected ion monitoring gas chromatography/mass spectrometry with electron impact ionization (EI/FS and EI/SIM), full scan and selected ion monitoring gas chromatography/mass spectrometry with positive ion chemical ionization using methane reagent gas (PICI/FS and PICI/SIM), and full scan and selected ion monitoring gas chromatography/mass spectrometry with negative ion chemical ionization using methane reagent gas (NICI/FS and NICI/SIM). The performance of the techniques was comapared by determining the linear response range, precision, and detection limits of the analyses.  相似文献   

20.
The development of a new configuration of chemical ionization (CI)‐based ion source is presented. The ambient air containing the gaseous sample is sniffed into an enclosed ionization chamber which is of sub‐ambient pressure, and is subsequently mixed with metastable species in front of the ion inlet of the mass spectrometer. Metastable helium atoms (He*) are used in this study as the primary ionizing agents and are generated from a dielectric barrier discharge (DBD) source. The DBD is powered by an AC high‐voltage supply and the configuration of the electrodes is in such a way that the generated plasma is confined within the discharge tube and is not extended into the ionization chamber. The construction of the ion source is simple, and volatile compounds released from the bulky sample can also be analyzed directly by approaching the sample to the sampling nozzle. When combined with heated nitrogen or other desorption methods, its application can also be extended to non‐volatile compounds, and the consumption for helium can be kept minimum solely for maintaining the stable discharge and gas phase ionization. Applications to non‐proximate sample analysis, direct determination of active ingredients in drug tablets and the detection of trace explosive such as hexamethylene triperoxide diamine are demonstrated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号