首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Berberine (BBR), a potential bioactive agent, has remarkable health benefits. A substantial amount of research has been conducted to date to establish the anticancer potential of BBR. The present review consolidates salient information concerning the promising anticancer activity of this compound. The therapeutic efficacy of BBR has been reported in several studies regarding colon, breast, pancreatic, liver, oral, bone, cutaneous, prostate, intestine, and thyroid cancers. BBR prevents cancer cell proliferation by inducing apoptosis and controlling the cell cycle as well as autophagy. BBR also hinders tumor cell invasion and metastasis by down-regulating metastasis-related proteins. Moreover, BBR is also beneficial in the early stages of cancer development by lowering epithelial–mesenchymal transition protein expression. Despite its significance as a potentially promising drug candidate, there are currently no pure berberine preparations approved to treat specific ailments. Hence, this review highlights our current comprehensive knowledge of sources, extraction methods, pharmacokinetic, and pharmacodynamic profiles of berberine, as well as the proposed mechanisms of action associated with its anticancer potential. The information presented here will help provide a baseline for researchers, scientists, and drug developers regarding the use of berberine as a promising candidate in treating different types of cancers.  相似文献   

2.
Berberine alkaloids, a group of protoberberine alkaloids under the classification of isoquinoline alkaloids, include berberine, coptisine, palmatine, columbamine, dehydrocorydaline, jatrorrhizine, and epiberberine from natural sources. Studies have shown that berberine alkaloids have various pharmacological functions, such as antibacterial, antiviral, blood pressure‐lowering, hypoglycaemic, antiarrhythmia, and anticancer effects. Therefore, it is worthwhile to develop analytical methods to investigate the pharmacokinetics and activity mechanisms of berberine alkaloids and to study berberine alkaloids more comprehensively. Current analytical methods for berberine alkaloids include liquid chromatography, thin‐layer chromatography, ultraviolet spectroscopy, capillary electrophoresis, and gas chromatography. The most widely used detection method is mass spectrometry. In order to provide a systematic and comprehensive summary and to serve as a reference for the future pharmacokinetics studies and analysis of berberine alkaloids, analytical methods for natural berberine alkaloids that have been used in the past ten years are reviewed here.  相似文献   

3.
Metabolite profiling of cancer cells presents many opportunities for anticancer drug discovery. The Chinese, Indian, and African flora, in particular, offers a diverse source of anticancer therapeutics as documented in traditional folklores. In-depth scientific information relating to mechanisms of action, quality control, and safety profile will promote their extensive usage in cancer therapy. Metabolomics may be a more holistic strategy to gain valuable insights into the anticancer mechanisms of action of plants but this has remained largely unexplored. This review, therefore, presents the available metabolomics studies on the anticancer effects of herbal medicines commonly used in Africa and Asia. In addition, we present some scientifically understudied ‘candidate plants’ for cancer metabolomics studies and highlight the relevance of metabolomics in addressing other challenges facing the drug development of anticancer herbs. Finally, we discussed the challenges of using metabolomics to uncover the underlying mechanisms of potential anticancer herbs and the progress made in this regard.  相似文献   

4.
Ferroptosis is a novel type of iron-dependent non-apoptotic pathway that regulates cell death and shows unique mechanisms including causing lipid peroxide accumulation, sensitizing drug-resistant cancers, priming immunity by immunogenic cell death, and cooperatively acting with other anticancer modalities for eradicating aggressive malignancies and tumor relapse. Recently, there has been a great deal of effort to design and develop anticancer biocompatible polymeric nanoplatforms including polypeptide and PEGylated ones to achieve effective ferroptosis therapy (FT) and synergistic combination therapies including chemotherapy (CT), photodynamic therapy (PDT), sonodynamic therapy (SDT), photothermal therapy (PTT), gas therapy (GT) including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), and immunotherapy (IT). To be noted, the combo therapies such as FT-CT, FT-PTT, FT-GT, and FT-IT are attracting much efforts to fight against intractable and metastatic tumors as they can generate synergistic antitumor effects and immunogenic cell death (ICD) effects or modulate immunosuppressive tumor microenvironments to initiate strong antitumor immunity and memory effects. The polymeric Fenton nano-agents with good biosafety and high anticancer efficacy will provide a guarantee for their applications. In this review, various biocompatible polymer-modified nanoplatforms designed for FT and combo treatments are summarized for anticancer therapies and discussed for potential clinical transitions.  相似文献   

5.
Cancer is the second leading cause of death globally. Millions of persons die due to cancer each year. In the last two decades, the anticancer effects of natural flavonoids have become a hot topic in many laboratories. Meanwhile, flavonoids, of which over 8000 molecules are known to date, are potential candidates for the discovery of anticancer drugs. The current review summarizes the major flavonoid classes of anticancer efficacy and discusses the potential anti-cancer mechanisms through inflammation and oxidative stress action, which were based on database and clinical studies within the past years. The results showed that flavonoids could regulate the inflammatory response and oxidative stress of tumor through some anti-inflammatory mechanisms such as NF-κB, so as to realize the anti-tumor effect.  相似文献   

6.
Even in the modern era of precision medicine and immunotherapy, chemotherapy with platinum (Pt) drugs remains among the most commonly prescribed medications against a variety of cancers. Unfortunately, the broad applicability of these blockbuster Pt drugs is severely limited by intrinsic and/or acquired resistance, and high systemic toxicity. Considering the strong interconnection between kinetic lability and undesired shortcomings of clinical Pt drugs, we rationally designed kinetically inert organometallic Pt based anticancer agents with a novel mechanism of action. Using a combination of in vitro and in vivo assays, we demonstrated that the development of a remarkably efficacious but kinetically inert Pt anticancer agent is feasible. Along with exerting promising antitumor efficacy in Pt-sensitive as well as Pt-resistant tumors in vivo, our best candidate has the ability to mitigate the nephrotoxicity issue associated with cisplatin. In addition to demonstrating, for the first time, the power of kinetic inertness in improving the therapeutic benefits of Pt based anticancer therapy, we describe the detailed mechanism of action of our best kinetically inert antitumor agent. This study will certainly pave the way for designing the next generation of anticancer drugs for effective treatment of various cancers.  相似文献   

7.
8.
There are abundant sources of anticancer drugs in nature that have a broad prospect in anticancer drug discovery. Natural compounds, with biological activities extracted from plants and marine and microbial metabolites, have significant antitumor effects, but their mechanisms are various. In addition to providing energy to cells, mitochondria are involved in processes, such as cell differentiation, cell signaling, and cell apoptosis, and they have the ability to regulate cell growth and cell cycle. Summing up recent data on how natural products regulate mitochondria is valuable for the development of anticancer drugs. This review focuses on natural products that have shown antitumor effects via regulating mitochondria. The search was done in PubMed, Web of Science, and Google Scholar databases, over a 5-year period, between 2015 and 2020, with a keyword search that focused on natural products, natural compounds, phytomedicine, Chinese medicine, antitumor, and mitochondria. Many natural products have been studied to have antitumor effects on different cells and can be further processed into useful drugs to treat cancer. In the process of searching for valuable new drugs, natural products such as terpenoids, flavonoids, saponins, alkaloids, coumarins, and quinones cover the broad space.  相似文献   

9.
Cancer is one of the leading causes of death globally. A variety of phenolic compounds display preventative and therapeutic effects against cancers. Green teas are rich in phenolics. Catechins are the most dominant phenolic component in green teas. Studies have shown that catechins have anticancer activity in various cancer models. The anticancer activity of catechins, however, may be compromised due to their low oral bioavailability. Nanodelivery emerges as a promising way to improve the oral bioavailability and anticancer activity of catechins. Research in this area has been actively conducted in recent decades. This review provides the molecular mechanisms of the anticancer effects of catechins, the factors that limit the oral bioavailability of catechins, and the latest advances of delivering catechins using nanodelivery systems through different routes to enhance their anticancer activity.  相似文献   

10.
There is increasing interest in the use of natural compounds with beneficial pharmacological effects for managing diseases. Curcumin (CUR) is a phytochemical that is reportedly effective against some cancers through its ability to regulate signaling pathways and protein expression in cancer development and progression. Unfortunately, its use is limited due to its hydrophobicity, low bioavailability, chemical instability, photodegradation, and fast metabolism. Nanoparticles (NPs) are drug delivery systems that can increase the bioavailability of hydrophobic drugs and improve drug targeting to cancer cells via different mechanisms and formulation techniques. In this review, we have discussed various CUR-NPs that have been evaluated for their potential use in treating cancers. Formulations reviewed include lipid, gold, zinc oxide, magnetic, polymeric, and silica NPs, as well as micelles, dendrimers, nanogels, cyclodextrin complexes, and liposomes, with an emphasis on their formulation and characteristics. CUR incorporation into the NPs enhanced its pharmaceutical and therapeutic significance with respect to solubility, absorption, bioavailability, stability, plasma half-life, targeted delivery, and anticancer effect. Our review shows that several CUR-NPs have promising anticancer activity; however, clinical reports on them are limited. We believe that clinical trials must be conducted on CUR-NPs to ensure their effective translation into clinical applications.  相似文献   

11.
Cancer is a very risky life-threatening disease having most formidable afflictions in the world. Several anticancer agents are commercially accessible, however, the emergence of acquired drug resistance along with extreme adverse effects of these clinically used anticancer medications are major barriers to the effective chemotherapy. Thus, it is recommended to rationally design the newer drugs with few side effects. Fluoroquinolone derivatives are of pivotal interest for researchers due to their admirable pharmacological and pharmacokinetic profiles. They exhibit several favourable characteristics including, higher bioavailability, excellent tissue penetration and relatively low prevalence of adverse and toxic effects. Due to their potential interventions in carcinogenesis and mutagenesis, the focus of the area of research is nowadays shifting towards anticancer aspects of these compounds. This review shows the recent advancements in the development of novel fluoroquinolones as potential anticancer and cytotoxic agents and structure-activity relationships along with the possible modes of action for further development and recent patents filed/granted related to anticancer activity from the last few years have also been tabulated. Also, this review is an attempt to focus on the various upcoming aspects of fluoroquinolones and provides a newer outlook on the possible roles of fluoroquinolones in the treatment of cancer. Scientific information identified in this paper is expected to be useful for aspiring researchers working on the anticancer activity of fluoroquinolones.  相似文献   

12.
Phenolics are broadly distributed in the plant kingdom and are the most abundant secondary metabolites of plants. Plant polyphenols have drawn increasing attention due to their potent antioxidant properties and their marked effects in the prevention of various oxidative stress associated diseases such as cancer. In the last few years, the identification and development of phenolic compounds or extracts from different plants has become a major area of health- and medical-related research. This review provides an updated and comprehensive overview on phenolic extraction, purification, analysis and quantification as well as their antioxidant properties. Furthermore, the anticancer effects of phenolics in-vitro and in-vivo animal models are viewed, including recent human intervention studies. Finally, possible mechanisms of action involving antioxidant and pro-oxidant activity as well as interference with cellular functions are discussed.  相似文献   

13.
Cancer is a major cause of premature death and there is an urgent need for new anticancer agents with novel mechanisms of action. Here we review recent studies on a group of peptides that show much promise in this regard, exemplified by arthropod cecropins and amphibian magainins and aureins. These molecules are alpha-helical defence peptides, which show potent anticancer activity (alpha-ACPs) in addition to their established roles as antimicrobial factors and modulators of innate immune systems. Generally, alpha-ACPs exhibit selectivity for cancer and microbial cells primarily due to their elevated levels of negative membrane surface charge as compared to non-cancerous eukaryotic cells. The anticancer activity of alpha-ACPs normally occurs at micromolar levels but is not accompanied by significant levels of haemolysis or toxicity to other mammalian cells. Structure/function studies have established that architectural features of alpha-ACPs such as amphiphilicty levels and hydrophobic arc size are of major importance to the ability of these peptides to invade cancer cell membranes. In the vast majority of cases the mechanisms underlying such killing involves disruption of mitochondrial membrane integrity and/or that of the plasma membrane of the target tumour cells. Moreover, these mechanisms do not appear to proceed via receptor-mediated routes but are thought to be effected in most cases by the carpet/toroidal pore model and variants. Usually, these membrane interactions lead to loss of membrane integrity and cell death utilising apoptic and necrotic pathways. It is concluded that that alpha-ACPs are major contenders in the search for new anticancer drugs, underlined by the fact that a number of these peptides have been patented in this capacity.  相似文献   

14.
Cancer is one of the major causes of death worldwide. As a consequence, many different therapeutic approaches, including the use of glycosides as anticancer agents, have been developed. Various glycosylated natural products exhibit high activity against a variety of microbes and human tumors. In this review we classify glycosides according to the nature of their aglycone (non-saccharidic) part. Among them, we describe anthracyclines, aureolic acids, enediyne antibiotics, macrolide and glycopeptides presenting different strengths and mechanisms of action against human cancers. In some cases, the glycosidic residue is crucial for their activity, such as in anthracycline, aureolic acid and enediyne antibiotics; in other cases, Nature has exploited glycosylation to improve solubility or pharmacokinetic properties, as in the glycopeptides. In this review we focus our attention on natural glycoconjugates with anticancer properties. The structure of several of the carbohydrate moieties found in these conjugates and their role are described. The structure–activity relationship of some of these compounds, together with the structural features of their interaction with the biological targets, are also reported. Taken together, all this information is useful for the design of new potential anti-tumor drugs.  相似文献   

15.
The rise in cancer cases in recent years is an alarming situation worldwide. Despite the tremendous research and invention of new cancer therapies, the clinical outcomes are not always reassuring. Cancer cells could develop several evasive mechanisms for their survivability and render therapeutic failure. The continuous use of conventional cancer therapies leads to chemoresistance, and a higher dose of treatment results in even greater toxicities among cancer patients. Therefore, the search for an alternative treatment modality is crucial to break this viscous cycle. This paper explores the suitability of curcumin combination treatment with other cancer therapies to curb cancer growth. We provide a critical insight to the mechanisms of action of curcumin, its role in combination therapy in various cancers, along with the molecular targets involved. Curcumin combination treatments were found to enhance anticancer effects, mediated by the multitargeting of several signalling pathways by curcumin and the co-administered cancer therapies. The preclinical and clinical evidence in curcumin combination therapy is critically analysed, and the future research direction of curcumin combination therapy is discussed.  相似文献   

16.
Blood cancers are a type of liquid tumor which means cancer is present in the body fluid. Multiple myeloma, leukemia, and lymphoma are the three common types of blood cancers. Chemotherapy is the major therapy of blood cancers by systemic administration of anticancer agents into the blood. However, a high incidence of relapse often happens, due to the low efficiency of the anticancer agents that accumulate in the tumor site, and therefore lead to a low survival rate of patients. This indicates an urgent need for a targeted drug delivery system to improve the safety and efficacy of therapeutics for blood cancers. In this review, we describe the current targeting strategies for blood cancers and recently investigated and approved drug delivery system formulations for blood cancers. In addition, we also discuss current challenges in the application of drug delivery systems for treating blood cancers.  相似文献   

17.
18.
Alkaloids produced by endophytic fungi: a review   总被引:1,自引:0,他引:1  
In recent years, a number of alkaloids have been discovered from endophytic fungi in plants, which exhibited excellent biological properties such as antimicrobial, insecticidal, cytotoxic, and anticancer activities. This review mainly deals with the research progress on endophytic fungi for producing bioactive alkaloids such as quinoline and isoquinoline, amines and amides, indole derivatives, pyridines, and quinazolines. The biological activities and action mechanisms of these alkaloids from endophytic fungi are also introduced. Furthermore, the relationships between alkaloid-producing endophytes and their host plants, as well as their potential applications in the future are discussed.  相似文献   

19.
Despite phenomenal clinical success, the efficacy of platinum anticancer drugs is often compromised due to inherent and acquired drug resistant phenotypes in cancers. To circumvent this issue, we designed two heterobimetallic platinum (II)-ferrocene hybrids that display multi-pronged anticancer action. In cancer cells, our best compound, 2 , platinates DNA, produces reactive oxygen species, and has nucleus, mitochondria, and endoplasmic reticulum as potential targets. The multi-modal mechanism of action of these hybrid agents lead to non-apoptotic cell death induction which enables circumventing apoptosis resistance and significant improvement in platinum cross resistance profile. Finally, in addition to describing detail mechanistic insights, we also assessed its stability in plasma and demonstrate anticancer efficacy in an in vivo A2780 xenograft model. Strikingly, compared to oxaliplatin, our compound displays better tolerability, safety profile and efficacy in vivo.  相似文献   

20.
Solid cancers are the most common types of cancers diagnosed globally and comprise a large number of deaths each year. The main challenge currently in drug development for tumors raised from solid organs is to find more selective compounds, which exploit specific molecular targets. In this work, the small molecule drugs registered by the Food and Drug Administration (FDA) for solid cancers treatment between 2011 and 2022 were identified and analyzed by investigating a type of therapy they are used for, as well as their structures and mechanisms of action. On average, 4 new small molecule agents were introduced each year, with a few exceptions, for a total of 62 new drug approvals. A total of 50 of all FDA-approved drugs have also been authorized for use in the European Union by the European Medicines Agency (EMA). Our analysis indicates that many more anticancer molecules show a selective mode of action, i.e., 49 targeted agents, 5 hormone therapies and 3 radiopharmaceuticals, compared to less specific cytostatic action, i.e., 5 chemotherapeutic agents. It should be emphasized that new medications are indicated for use mainly for monotherapy and less for a combination or adjuvant therapies. The comprehensive data presented in this review can serve for further design and development of more specific targeted agents in clinical usage for solid tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号