首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
(1) Alzheimer’s disease (AD) is a neurodegenerative disorder, and it is now widely accepted that neuroinflammation plays a key role in its pathogenesis. Eriodictyol (Eri) and homoeriodictyol (Hom), dihydroflavonoids extracted from a variety of plants, have been confirmed to display a relationship with neuroprotection. (2) Methods: An AD mouse model was constructed by intracerebroventricular (ICV) injection of the Aβ25–35 peptide, and Eri and Hom were administered orally for 4 weeks. UPLC-MS/MS was used to determine whether Eri and Hom cross the blood–brain barrier to exert their therapeutic effects. Histological changes in the brain and levels of Aβ were evaluated, and Y-maze and new object recognition experiments were conducted to assess the effects of Eri and Hom on Aβ25–35-induced memory impairment in mice. The levels of oxidative stress and apoptosis in peripheral immune cells and progenitor cells in the hippocampal region were analyzed by flow cytometry and in vitro assays. Western blotting and enzyme-linked immunosorbent assays (ELISA) were used to measure the expression levels of NLRP3 inflammasome-related proteins and inflammatory factors in the brain. The effect of nigericin (an agonist of the NLRP3 inflammasome) on Eri and Hom intervention in LPS-induced N9 microglia was examined using a High Content Screening System. (3) Results: Eri and Hom reduced neuronal damage in mouse brain tissue, decreased Aβ levels in the brain, downregulated oxidative stress and apoptosis levels, and improved learning and memory capacity by crossing the blood–brain barrier to exert its effects. Moreover, Eri and Hom inhibited NLRP3 inflammasome activation and ameliorated immune cell disorder. Furthermore, the effect of Eri and Hom on LPS-induced N9 microglia disappeared after the addition of nigericin to agonize NLRP3 receptors. (4) Conclusions: Eri and Hom improved Aβ25–35-induced memory impairment in mice by inhibiting the NLRP3 inflammasome.  相似文献   

2.
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder characterized by cognitive deficits, which are accompanied by memory loss and cognitive disruption. Rhodiola sachalinensis (RSE) is a medicinal plant that has been used in northeastern Asia for various pharmacological activities. We attempted to carry out the bioconversion of RSE (Bio-RSE) using the mycelium of Bovista plumbe to obtain tyrosol-enriched Bio-RSE. The objective of this study was to investigate the effects of Bio-RSE on the activation of the cholinergic system and the inhibition of oxidative stress in mice with scopolamine (Sco)-induced memory impairment. Sco (1 mg/kg body weight, i.p.) impaired the mice’s performance on the Y-maze test, passive avoidance test, and water maze test. However, the number of abnormal behaviors was reduced in the groups supplemented with Bio-RSE. Bio-RSE treatment improved working memory and avoidance times against electronic shock, increased step-through latency, and reduced the time to reach the escape zone in the water maze test. Bio-RSE dramatically improved the cholinergic system by decreasing acetylcholinesterase activity and regulated oxidative stress by increasing antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)). The reduction in nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling in the brain tissue due to scopolamine was restored by the administration of Bio-RSE. Bio-RSE also significantly decreased amyloid-beta 1–42 (Aβ1–42) and amyloid precursor protein (APP) expression. Moreover, the increased malondialdehyde (MDA) level and low total antioxidant capacity in Sco-treated mouse brains were reversed by Bio-RSE, and an increase in Nrf2 and HO-1 was also observed. In conclusion, Bio-RSE protected against Sco-induced cognitive impairment by activating Nrf2/HO-1 signaling and may be developed as a potential beneficial material for AD.  相似文献   

3.
4.
Plumbagin, a hydroxy-1,4-naphthoquinone, confers neuroprotection via antioxidant and anti-inflammatory properties. The present study aimed to assess the effect of plumbagin on behavioral and memory deficits induced by intrahippocampal administration of Quinolinic acid (QA) in male Wistar rats and reveal the associated mechanisms. QA (300 nM/4 μL in Normal saline) was administered i.c.v. in the hippocampus. QA administration caused depression-like behavior (forced swim test and tail suspension tests), anxiety-like behavior (open field test and elevated plus maze), and elevated anhedonia behavior (sucrose preference test). Furthermore, oxidative–nitrosative stress (increased nitrite content and lipid peroxidation with reduction of GSH), inflammation (increased IL-1β), cholinergic dysfunction, and mitochondrial complex (I, II, and IV) dysfunction were observed in the hippocampus region of QA-treated rats as compared to normal controls. Plumbagin (10 and 20 mg/kg; p.o.) treatment for 21 days significantly ameliorated behavioral and memory deficits in QA-administered rats. Moreover, plumbagin treatment restored the GSH level and reduced the MDA and nitrite level in the hippocampus. Furthermore, QA-induced cholinergic dysfunction and mitochondrial impairment were found to be ameliorated by plumbagin treatment. In conclusion, our results suggested that plumbagin offers a neuroprotective potential that could serve as a promising pharmacological approach to mitigate neurobehavioral changes associated with neurodegeneration.  相似文献   

5.
Oxidative stress (OS) is a metabolic dysfunction mediated by the imbalance between the biochemical processes leading to elevated production of reactive oxygen species (ROS) and the antioxidant defense system of the body. It has a ubiquitous role in the development of numerous noncommunicable maladies including cardiovascular diseases, cancers, neurodegenerative diseases, aging and respiratory diseases. Diseases associated with metabolic dysfunction may be influenced by changes in the redox balance. Lately, there has been increasing awareness and evidence that diabetes mellitus (DM), particularly type 2 diabetes, is significantly modulated by oxidative stress. DM is a state of impaired metabolism characterized by hyperglycemia, resulting from defects in insulin secretion or action, or both. ROS such as hydrogen peroxide and the superoxide anion introduce chemical changes virtually in all cellular components, causing deleterious effects on the islets of β-cells, in turn affecting insulin production. Under hyperglycemic conditions, various signaling pathways such as nuclear factor-κβ (NF-κβ) and protein kinase C (PKC) are also activated by ROS. All of these can be linked to a hindrance in insulin signaling pathways, leading to insulin resistance. Hyperglycemia-induced oxidative stress plays a substantial role in complications including diabetic nephropathy. DM patients are more prone to microvascular as well as atherosclerotic macrovascular diseases. This systemic disease affects most countries around the world, owing to population explosion, aging, urbanization, obesity, lifestyle, etc. However, some modulators, with their free radical scavenging properties, can play a prospective role in overcoming the debilitating effects of OS. This review is a modest approach to summarizing the basics and interlinkages of oxidative stress, its modulators and diabetes mellitus. It may add to the understanding of and insight into the pathophysiology of diabetes and the crucial role of antioxidants to weaken the complications and morbidity resulting from this chronic disease.  相似文献   

6.
Parkinson’s disease is characterized by the loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) and the resultant loss of dopamine in the striatum. Various studies have shown that oxidative stress and neuroinflammation plays a major role in PD progression. In addition, the autophagy lysosome pathway (ALP) plays an important role in the degradation of aggregated proteins, abnormal cytoplasmic organelles and proteins for intracellular homeostasis. Dysfunction of ALP results in the accumulation of α-synuclein and the loss of dopaminergic neurons in PD. Thus, modulating ALP is becoming an appealing therapeutic intervention. In our current study, we wanted to evaluate the neuroprotective potency of noscapine in a rotenone-induced PD rat model. Rats were administered rotenone injections (2.5 mg/kg, i.p.,) daily followed by noscapine (10 mg/kg, i.p.,) for four weeks. Noscapine, an iso-qinulinin alkaloid found naturally in the Papaveraceae family, has traditionally been used in the treatment of cancer, stroke and fibrosis. However, the neuroprotective potency of noscapine has not been analyzed. Our study showed that administration of noscapine decreased the upregulation of pro-inflammatory factors, oxidative stress, and α-synuclein expression with a significant increase in antioxidant enzymes. In addition, noscapine prevented rotenone-induced activation of microglia and astrocytes. These neuroprotective mechanisms resulted in a decrease in dopaminergic neuron loss in SNpc and neuronal fibers in the striatum. Further, noscapine administration enhanced the mTOR-mediated p70S6K pathway as well as inhibited apoptosis. In addition to these mechanisms, noscapine prevented a rotenone-mediated increase in lysosomal degradation, resulting in a decrease in α-synuclein aggregation. However, further studies are needed to further develop noscapine as a potential therapeutic candidate for PD treatment.  相似文献   

7.
Alzheimer’s disease (AD) is caused by excessive oxidative damage and aging. The objective of this study was to investigate the anti-dementia effect of LCP fruit powder on amyloid β (Aβ)-induced Alzheimer’s mice. The composition of LCP essential oil was determined by gas chromatography/mass spectrometry. In addition, the water maze was used to evaluate the learning and memorizing abilities of the mice. The concentrations of malondialdehyde (MDA), protein carbonyl, phosphorylated τ-protein, and the deposition of Aβ plaques in mouse brains were also assessed. The results showed that the main components of essential oils in LCP and d-limonene, neral, and geranial contents were 14.15%, 30.94%, and 31.74%, respectively. Furthermore, oral administration with different dosages of LCP significantly decreased the escape time (21.25~33.62 s) and distance (3.23~5.07 m) in the reference memory test, and increased the duration time (26.14~28.90 s) and crossing frequency (7.00~7.88 times) in the target zone of probe test (p < 0.05). LCP also inhibited the contents of MDA and the phosphor-τ-protein from oxidative stress, reduced the brain atrophy by about 3~8%, and decreased the percentage of Aβ plaques from 0.44 to 0.05%. Finally, it was observed that the minimum dosage of LCP fruit powder (LLCP, 30.2 mg/day) could prevent oxidative stress induced by Aβ and subsequently facilitate memory and learning deficits in Aβ-induced neurotoxicity and cognitively impaired mice.  相似文献   

8.
Background: Alzheimer’s disease (AD) is a chronic neurological illness that causes considerable cognitive impairment. Hepatic and renal dysfunction may worsen AD by disrupting β-amyloid homeostasis at the periphery and by causing metabolic dysfunction. Wheatgrass (Triticum aestivum) has been shown to have antioxidant and anti-inflammatory properties. This work aims to study the effect of aluminum on neuronal cells, its consequences on the liver and kidneys, and the possible role of fluoxetine and wheatgrass juice in attenuating these pathological conditions. Method: Rats were divided into five groups. Control, AD (AlCl3), Fluoxetine (Fluoxetine and AlCl3), Wheatgrass (Wheatgrass and AlCl3), and combination group (fluoxetine, wheatgrass, and AlCl3). All groups were assigned daily to different treatments for five weeks. Conclusions: AlCl3 elevated liver and kidney enzymes, over-production of oxidative stress, and inflammatory markers. Besides, accumulation of tau protein and Aβ, the elevation of ACHE and GSK-3β, down-regulation of BDNF, and β–catenin expression in the brain. Histopathological examinations of the liver, kidney, and brain confirmed this toxicity, while treating AD groups with fluoxetine, wheatgrass, or a combination alleviates toxic insults. Conclusion: Fluoxetine and wheatgrass combination demonstrated a more significant neuroprotective impact in treating AD than fluoxetine alone and has protective effects on liver and kidney tissues.  相似文献   

9.
Phenolic compounds are thought to be important to prevent neurodegenerative diseases (ND). Parkinson’s Disease (PD) is a neurodegenerative disorder known for its typical motor features, the deposition of α-synuclein (αsyn)-positive inclusions in the brain, and for concomitant cellular pathologies that include oxidative stress and neuroinflammation. Neuroprotective activity of fisetin, a dietary flavonoid, was evaluated against main hallmarks of PD in relevant cellular models. At physiologically relevant concentrations, fisetin protected SH-SY5Y cells against oxidative stress overtaken by tert-butyl hydroperoxide (t-BHP) and against methyl-4-phenylpyridinuim (MPP+)-induced toxicity in dopaminergic neurons, the differentiated Lund human Mesencephalic (LUHMES) cells. In this cellular model, fisetin promotes the increase of the levels of dopamine transporter. Remarkably, fisetin reduced the percentage of cells containing αsyn inclusions as well as their size and subcellular localization in a yeast model of αsyn aggregation. Overall, our data show that fisetin exerts modulatory activities toward common cellular pathologies present in PD; remarkably, it modulates αsyn aggregation, supporting the idea that diets rich in this compound may prove beneficial.  相似文献   

10.
Nutrition transition can be defined as shifts in food habits, and it is characterized by high-fat (chiefly saturated animal fat), hypercaloric and salty food consumption at the expense of dietary fibers, minerals and vitamins. Western dietary patterns serve as a model for studying the impact of nutrition transition on civilization diseases, such as obesity, which is commonly associated with oxidative stress and inflammation. In fact, reactive oxygen species (ROS) overproduction can be associated with nuclear factor-κB (NF-κB)-mediated inflammation in obesity. NF-κB regulates gene expression of several oxidant-responsive adipokines including tumor necrosis factor-α (TNF-α). Moreover, AMP-activated protein kinase (AMPK), which plays a pivotal role in energy homeostasis and in modulation of metabolic inflammation, can be downregulated by IκB kinase (IKK)-dependent TNF-α activation. On the other hand, adherence to a Mediterranean-style diet is highly encouraged because of its healthy dietary pattern, which includes antioxidant nutraceuticals such as polyphenols. Indeed, hydroxycinnamic derivatives, quercetin, resveratrol, oleuropein and hydroxytyrosol, which are well known for their antioxidant and anti-inflammatory activities, exert anti-obesity proprieties. In this review, we highlight the impact of the most common polyphenols from Mediterranean foods on molecular mechanisms that mediate obesity-related oxidative stress and inflammation. Hence, we discuss the effects of these polyphenols on a number of signaling pathways. We note that Mediterranean diet (MedDiet) dietary polyphenols can de-regulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) and NF-κB-mediated oxidative stress, and metabolic inflammation. MedDiet polyphenols are also effective in upregulating downstream effectors of several proteins, chiefly AMPK.  相似文献   

11.
Ergosta-7,9(11),22-trien-3β-ol (EK100) was isolated from the Taiwan-specific medicinal fungus Antrodia camphorata, which is known for its health-promotion and anti-aging effects in folk medicine. Alzheimer’s disease (AD) is a major aging-associated disease. We investigated the efficacy and potential mechanism of ergosta-7,9(11),22-trien-3β-ol for AD symptoms. Drosophila with the pan-neuronal overexpression of human amyloid-β (Aβ) was used as the AD model. We compared the life span, motor function, learning, memory, oxidative stress, and biomarkers of microglia activation and inflammation of the ergosta-7,9(11),22-trien-3β-ol-treated group to those of the untreated control. Ergosta-7,9(11),22-trien-3β-ol treatment effectively improved the life span, motor function, learning, and memory of the AD model compared to the untreated control. Biomarkers of microglia activation and inflammation were reduced, while the ubiquitous lipid peroxidation, catalase activity, and superoxide dismutase activity remained unchanged. In conclusion, ergosta-7,9(11),22-trien-3β-ol rescues AD deficits by modulating microglia activation but not oxidative stress.  相似文献   

12.
PPARγ agonists are implicated in the regulation of diabetes and metabolic syndrome and have therapeutic potential in brain disorders. PPARγ modulates appetite through its central effects, especially on the hypothalamic arcuate nucleus (ARC). Previous studies demonstrated that the small molecule GL516 is a PPARγ agonist able to reduce oxidative stress and apoptosis with a potential neuroprotective role. Herein, we investigated the effects of GL516, in vitro and ex vivo, on the levels of hypothalamic dopamine (DA) and serotonin (5-HT). The gene expressions of neuropeptide Y, CART, AgRP, and POMC, which play master roles in the neuroendocrine regulation of feeding behavior and energy balance, were also evaluated. HypoE22 cells were treated with H2O2 (300 μM) for 2 h e 30’ and with different concentrations of GL516 (1 nM-100 µM). The cell viability was evaluated after 24 and 48 h of culturing using the MTT test. DA and 5-HT levels in the HypoE22 cell supernatants were analyzed through HPLC; an ex vivo study on isolated hypothalamic specimens challenged with scalar concentrations of GL516 (1–100 µM) and with pioglitazone (10 µM) was carried out. The gene expressions of CART, NPY, AgRP, and POMC were also determined by a quantitative real-time PCR. The results obtained showed that GL516 was able to reduce DA and 5-HT turnover; moreover, it was effective in stimulating NPY and AgRP gene expressions with a concomitant reduction in CART and POMC gene expressions. These results highlight the capability of GL516 to modulate neuropeptide pathways deeply involved in appetite control suggesting an orexigenic effect. These findings emphasize the potential use of GL516 as a promising candidate for therapeutical applications in neurodegenerative diseases associated with the reduction in food intake and stimulation of catabolic pathways.  相似文献   

13.
The present study describes investigation of the effects of the bark resin extract of Garcinia nigrolineata (Clusiaceae) on the cognitive function and the induction of oxidative stress in both frontal cortex and hippocampus by unpredictable chronic mild stress (UCMS). By using behavioral mouse models, i.e., the Y-maze test, the Novel Object Recognition Test (NORT), and the Morris Water Maze Test (MWMT), it was found that the negative impact of repeated mild stress-induced learning and memory deficit through brain oxidative stress in the UCMS mice was reversed by treatment with the bark resin extract G. nigrolineata. Moreover, the prenylated xanthones viz. cowagarcinone C, cowaxanthone, α-mangostin, cowaxanthone B, cowanin, fuscaxanthone A, fuscaxanthone B, xanthochymusxanthones A, 7-O-methylgarcinone E, and cowagarcinone A, isolated from the bark resin of G. nigrolineata, were assayed for their inhibitory activities against β-amyloid (Aβ) aggregation and monoamine oxidase enzymes (MAOs).  相似文献   

14.
Neurodegenerative diseases (NDDs) are one of the leading causes of death and disability in humans. From a mechanistic perspective, the complexity of pathophysiological mechanisms contributes to NDDs. Therefore, there is an urgency to provide novel multi-target agents towards the simultaneous modulation of dysregulated pathways against NDDs. Besides, their lack of effectiveness and associated side effects have contributed to the lack of conventional therapies as suitable therapeutic agents. Prevailing reports have introduced plant secondary metabolites as promising multi-target agents in combating NDDs. Polydatin is a natural phenolic compound, employing potential mechanisms in fighting NDDs. It is considered an auspicious phytochemical in modulating neuroinflammatory/apoptotic/autophagy/oxidative stress signaling mediators such as nuclear factor-κB (NF-κB), NF-E2–related factor 2 (Nrf2)/antioxidant response elements (ARE), matrix metalloproteinase (MMPs), interleukins (ILs), phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt), and the extracellular regulated kinase (ERK)/mitogen-activated protein kinase (MAPK). Accordingly, polydatin potentially counteracts Alzheimer’s disease, cognition/memory dysfunction, Parkinson’s disease, brain/spinal cord injuries, ischemic stroke, and miscellaneous neuronal dysfunctionalities. The present study provides all of the neuroprotective mechanisms of polydatin in various NDDs. Additionally, the novel delivery systems of polydatin are provided regarding increasing its safety, solubility, bioavailability, and efficacy, as well as developing a long-lasting therapeutic concentration of polydatin in the central nervous system, possessing fewer side effects.  相似文献   

15.
Alzheimer’s disease (AD) is a major neurodegenerative disease, but so far, it can only be treated symptomatically rather than changing the process of the disease. Recently, triazoles and their derivatives have been shown to have potential for the treatment of AD. In this study, the neuroprotective effects of 4-(4-(heptyloxy)phenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (W112) against β-amyloid (Aβ)-induced AD pathology and its possible mechanism were explored both in vitro and in vivo. The results showed that W112 exhibits a neuroprotective role against Aβ-induced cytotoxicity in PC12 cells and improves the learning and memory abilities of Aβ-induced AD-like rats. In addition, the assays of the protein expression revealed that W112 reversed tau hyperphosphorylation and reduced the production of proinflammatory cytokines, tumor necrosis factor-α and interleukin-6, both in vitro and in vivo studies. Further study indicated that the regulation of mitogen-activated protein kinase/nuclear factor-κB pathways played a key role in mediating the neuroprotective effects of W112 against AD-like pathology. W112 may become a potential drug for AD intervention.  相似文献   

16.
Methamphetamine (METH) is a synthetic psychostimulant drug that has detrimental effects on the health of its users. Although it has been investigated as a cause of neurodegenerative disease due to its neurotoxicity, whether small molecules derived from natural products attenuate these side effects remains elusive. 6,7,4′-trihydroxyflavanone (THF) is a flavanone family that possesses various pharmacological activities, including anti-rheumatic, anti-ischemic, anti-inflammatory, anti-osteoclastogenic, and protective effects against METH-induced deactivation of T cells. However, little is known about whether THF protects neuronal cells from METH-induced neurotoxicity. Here, we investigated the protective effects of THF on neurotoxicity induced by METH exposure by enhancing the Nrf2/HO-1 and PI3K/Akt/mTOR signaling pathways in SH-SY5y cells. Treatment with THF did not lead to cytotoxicity, but attenuated METH-induced neurotoxicity by modulating the expression of apoptosis-related proteins, METH-induced oxidative stress, and PI3K/Akt/mTOR phosphorylation in METH-exposed SH-SY5y cells. Moreover, we found THF induced Nrf2 nuclear translocation and HO-1 expression. An inhibitor assay confirmed that the induction of HO-1 by THF attenuates METH-induced neurotoxicity. Therefore, we suggest that THF preserves neuronal cells from METH-induced neurotoxicity by upregulating HO-1 expression through the Nrf2 and PI3K/Akt/mTOR signaling pathways. Thus, THF has therapeutic potential for use in the treatment of METH-addicts suffering from neurodegenerative diseases.  相似文献   

17.
Memory deterioration in Alzheimer’s disease (AD) is thought to be underpinned by aberrant amyloid β (Aβ) accumulation, which contributes to synaptic plasticity impairment. Avenanthramide-C (Avn-C), a polyphenol compound found predominantly in oats, has a range of biological properties. Herein, we performed methanolic extraction of the Avns-rich fraction (Fr. 2) from germinated oats using column chromatography, and examined the effects of Avn-C on synaptic correlates of memory in a mouse model of AD. Avn-C was identified in Fr. 2 based on 1H-NMR analysis. Electrophysiological recordings were performed to examine the effects of Avn-C on the hippocampal long-term potentiation (LTP) in a Tg2576 mouse model of AD. Avn-C from germinated oats restored impaired LTP in Tg2576 mouse hippocampal slices. Furthermore, Avn-C-facilitated LTP was associated with changes in the protein levels of phospho-glycogen synthase kinase-3β (p-GSK3β-S9) and cleaved caspase 3, which are involved in Aβ-induced synaptic impairment. Our findings suggest that the Avn-C extract from germinated oats may be beneficial for AD-related synaptic plasticity impairment and memory decline.  相似文献   

18.
The longstanding progressive neurodegenerative conditions of the central nervous system arise mainly due to deterioration, degradation and eventual neuronal cell loss. As an individual ages, the irreversible neurodegenerative disorders associated with aging also begin to develop, and these have become exceedingly prominent and pose a significant burden mentally, socially and economically on both the individual and their family. These disorders express several symptoms, such as tremors, dystonia, loss of cognitive functions, impairment of motor activity leading to immobility, loss of memory and many more which worsen with time. The treatment employed in management of these debilitating neurodegenerative disorders, such as Parkinson’s disease (which mainly involves the loss of dopaminergic neurons in the nigrostriatal region), Alzheimer’s disease (which arises due to accumulation of Tau proteins causing diffusive atrophy in the brain), Huntington’s disease (which involves damage of striatal and spinal neurons, etc.), have several adverse effects, leading to exploration of several lead targets and molecules existing in herbal drugs. The current review highlights the mechanistic role of natural products in the treatment of several neurodegenerative and cerebrovascular diseases such as Parkinson’s disease, Alzheimer’s disease, ischemic stroke and depression.  相似文献   

19.
The function and the role phytoceramide (PCER) and phytosphingosine (PSO) in the central nervous system has not been well studied. This study was aimed at investigating the possible roles of PCER and PSO in glutamate-induced neurotoxicity in cultured neuronal cells and memory function in mice. Phytoceramide showed neuro-protective activity in the glutamate-induced toxicity in cultured cortical neuronal cells. Neither phytosphingosine nor tetraacetylphytosphingosine (TAPS) showed neuroproective effects in neuronal cells. PCER (50 mg/kg, p.o.) recovered the scopolamine-induced reduction in step-through latency in the passive avoidance test; however, PSO did not modulate memory function on this task. The ameliorating effects of PCER on spatial memory were confirmed by the Morris water maze test. In conclusion, through behavioral and neurochemical experimental results, it was demonstrated that central administration of PCER produces amelioration of memory impairment. These results suggest that PCER plays an important role in neuroprotection and memory enhancement and PCER could be a potential new therapeutic agent for the treatment of neurodegenerative diseases such as Alzheimer's disease.  相似文献   

20.
Origanum vulgare ssp. hirtum has been used as medicinal herbs promoting antioxidant, anti-inflammatory, antimicrobial, and neuroprotective activities. We investigated the protective effects and the mechanism of O. vulgare ssp. hirtum essential oil (OEO) on cognitive impairment and brain oxidative stress in a scopolamine (Sco)-induced zebrafish (Danio rerio) model of cognitive impairment. Our results show that exposure to Sco (100 µM) leads to anxiety, spatial memory, and response to novelty dysfunctions, whereas the administration of OEO (25, 150, and 300 µL/L, once daily for 13 days) reduced anxiety-like behavior and improved cognitive ability, which was confirmed by behavioral tests, such as the novel tank-diving test (NTT), Y-maze test, and novel object recognition test (NOR) in zebrafish. Additionally, Sco-induced brain oxidative stress and increasing of acetylcholinesterase (AChE) activity were attenuated by the administration of OEO. The gas chromatography–mass spectrometry (GC-MS) analyses were used to elucidate the OEO composition, comprising thymol (38.82%), p-cymene (20.28%), and γ-terpinene (19.58%) as the main identified components. These findings suggest the ability of OEO to revert the Sco-induced cognitive deficits by restoring the cholinergic system activity and brain antioxidant status. Thus, OEO could be used as perspective sources of bioactive compounds, displaying valuable biological activities, with potential pharmaceutical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号