首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Constantin Popa 《PAMM》2008,8(1):10823-10824
In this paper we consider three versions of Kovarik's iterative orthogonalization algorithms, for approximating the minimal norm solution of symmetric least squares problems. Although the convergence of these algorithms is linear, in practical applications we observed that a too big number of iterations can dramatically deteriorate the already obtained approximation. In this respect we analyse the above mentioned Kovarik–like methods according to the modifications they make on the “machine zero” eigenvalues of the problem (symmetric) matrix. We establish a theoretical almost optimal formula for the number of iterations necessary to obtain an enough accurate approximation, as well as to avoid the above mentioned troubles. Experiments on collocation discretization of a Fredholm first kind integral equation ilustrate the efficiency of our considerations. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Iterative refinement is a well-known technique for improving the quality of an approximate solution to a linear system. In the traditional usage residuals are computed in extended precision, but more recent work has shown that fixed precision is sufficient to yield benefits for stability. We extend existing results to show that fixed precision iterative refinement renders anarbitrary linear equations solver backward stable in a strong, componentwise sense, under suitable assumptions. Two particular applications involving theQR factorization are discussed in detail: solution of square linear systems and solution of least squares problems. In the former case we show that one step of iterative refinement suffices to produce a small componentwise relative backward error. Our results are weaker for the least squares problem, but again we find that iterative refinement improves a componentwise measure of backward stability. In particular, iterative refinement mitigates the effect of poor row scaling of the coefficient matrix, and so provides an alternative to the use of row interchanges in the HouseholderQR factorization. A further application of the results is described to fast methods for solving Vandermonde-like systems.  相似文献   

3.
Using the least squares, modified Lagrangian function, and some other methods as examples, the capabilities of the new optimization technique based on the quadratic approximation of penalty functions that has been recently proposed by O. Mangasarian for a special class of linear programming problems are demonstrated. The application of this technique makes it possible to use unified matrix operations and standard linear algebra packages (including parallel ones) for solving large-scale problems with sparse strongly structured constraint matrices. With this technique, the computational schemes of some well-known algorithms can take an unexpected form.  相似文献   

4.
Tikhonov’s regularized method of least squares and its generalizations to non-Euclidean norms, including polyhedral, are considered. The regularized method of least squares is reduced to mathematical programming problems obtained by “instrumental” generalizations of the Tikhonov lemma on the minimal (in a certain norm) solution of a system of linear algebraic equations with respect to an unknown matrix. Further studies are needed for problems concerning the development of methods and algorithms for solving reduced mathematical programming problems in which the objective functions and admissible domains are constructed using polyhedral vector norms.  相似文献   

5.
We study a linear, discrete ill-posed problem, by which we mean a very ill-conditioned linear least squares problem. In particular we consider the case when one is primarily interested in computing a functional defined on the solution rather than the solution itself. In order to alleviate the ill-conditioning we require the norm of the solution to be smaller than a given constant. Thus we are lead to minimizing a linear functional subject to two quadratic constraints. We study existence and uniqueness for this problem and show that it is essentially equivalent to a least squares problem with a linear and a quadratic constraint, which is easier to handle computationally. Efficient algorithms are suggested for this problem.  相似文献   

6.
We consider the perturbation analysis of two important problems for solving ill-conditioned or rank-deficient linear least squares problems. The Tikhonov regularized problem is a linear least squares problem with a regularization term balancing the size of the residual against the size of the weighted solution. The weight matrix can be a non-square matrix (usually with fewer rows than columns). The minimum-norm problem is the minimization of the size of the weighted solutions given by the set of solutions to the, possibly rank-deficient, linear least squares problem.It is well known that the solution of the Tikhonov problem tends to the minimum-norm solution as the regularization parameter of the Tikhonov problem tends to zero. Using this fact and the generalized singular value decomposition enable us to make a perturbation analysis of the minimum-norm problem with perturbation results for the Tikhonov problem. From the analysis we attain perturbation identities for Tikhonov inverses and weighted pseudoinverses.  相似文献   

7.
Iterative methods applied to the normal equationsA T Ax=A T b are sometimes used for solving large sparse linear least squares problems. However, when the matrix is rank-deficient many methods, although convergent, fail to produce the unique solution of minimal Euclidean norm. Examples of such methods are the Jacobi and SOR methods as well as the preconditioned conjugate gradient algorithm. We analyze here an iterative scheme that overcomes this difficulty for the case of stationary iterative methods. The scheme combines two stationary iterative methods. The first method produces any least squares solution whereas the second produces the minimum norm solution to a consistent system. This work was supported by the Swedish Research Council for Engineering Sciences, TFR.  相似文献   

8.
9.
A computational procedure is developed for determining the solution of minimal length to a linear least squares problem subject to bounds on the variables. In the first stage, a solution to the least squares problem is computed and then in the second stage, the solution of minimal length is determined. The objective function in each step is minimized by an active set method adapted to the special structure of the problem.The systems of linear equations satisfied by the descent direction and the Lagrange multipliers in the minimization algorithm are solved by direct methods based on QR decompositions or iterative preconditioned conjugate gradient methods. The direct and the iterative methods are compared in numerical experiments, where the solutions are sought to a sequence of related, minimal least squares problems subject to bounds on the variables. The application of the iterative methods to large, sparse problems is discussed briefly.This work was supported by The National Swedish Board for Technical Development under contract dnr 80-3341.  相似文献   

10.
We propose a sparse approximate inverse preconditioner based on the Sherman-Morrison formula for Tikhonov regularized least square problems. Theoretical analysis shows that, the factorization method can take the advantage of the symmetric property of the coefficient matrix and be implemented cheaply. Combined with dropping rules, the incomplete factorization leads to a preconditioner for Krylov iterative methods to solve regularized least squares problems. Numerical experiments show that our preconditioner is competitive compared to existing methods, especially for ill-conditioned and rank deficient least squares problems.  相似文献   

11.
A multilevel approach for nonnegative matrix factorization   总被引:1,自引:0,他引:1  
Nonnegative matrix factorization (NMF), the problem of approximating a nonnegative matrix with the product of two low-rank nonnegative matrices, has been shown to be useful in many applications, such as text mining, image processing, and computational biology. In this paper, we explain how algorithms for NMF can be embedded into the framework of multilevel methods in order to accelerate their initial convergence. This technique can be applied in situations where data admit a good approximate representation in a lower dimensional space through linear transformations preserving nonnegativity. Several simple multilevel strategies are described and are experimentally shown to speed up significantly three popular NMF algorithms (alternating nonnegative least squares, multiplicative updates and hierarchical alternating least squares) on several standard image datasets.  相似文献   

12.
In applications such as signal processing and statistics, many problems involve finding sparse solutions to under-determined linear systems of equations. These problems can be formulated as a structured nonsmooth optimization problems, i.e., the problem of minimizing 1-regularized linear least squares problems. In this paper, we propose a block coordinate gradient descent method (abbreviated as CGD) to solve the more general 1-regularized convex minimization problems, i.e., the problem of minimizing an 1-regularized convex smooth function. We establish a Q-linear convergence rate for our method when the coordinate block is chosen by a Gauss-Southwell-type rule to ensure sufficient descent. We propose efficient implementations of the CGD method and report numerical results for solving large-scale 1-regularized linear least squares problems arising in compressed sensing and image deconvolution as well as large-scale 1-regularized logistic regression problems for feature selection in data classification. Comparison with several state-of-the-art algorithms specifically designed for solving large-scale 1-regularized linear least squares or logistic regression problems suggests that an efficiently implemented CGD method may outperform these algorithms despite the fact that the CGD method is not specifically designed just to solve these special classes of problems.  相似文献   

13.
Sparse matrices     
One gives a survey of methods and programs for solving large sparse spectral problems based on the Lanczos algorithm. Practically all the important works on this topic are reflected in this survey. One also considers applications of the variants of the Lanczos method to the solution of symmetric indefinite systems of linear equations and to a series of other problems of linear algebra.Translated from Itogi Nauki i Tekhniki, Seriya Matematicheskii Analiz, Vol. 20, pp. 179–260, 1982.  相似文献   

14.
We propose two approaches to solve large-scale compressed sensing problems. The first approach uses the parametric simplex method to recover very sparse signals by taking a small number of simplex pivots, while the second approach reformulates the problem using Kronecker products to achieve faster computation via a sparser problem formulation. In particular, we focus on the computational aspects of these methods in compressed sensing. For the first approach, if the true signal is very sparse and we initialize our solution to be the zero vector, then a customized parametric simplex method usually takes a small number of iterations to converge. Our numerical studies show that this approach is 10 times faster than state-of-the-art methods for recovering very sparse signals. The second approach can be used when the sensing matrix is the Kronecker product of two smaller matrices. We show that the best-known sufficient condition for the Kronecker compressed sensing (KCS) strategy to obtain a perfect recovery is more restrictive than the corresponding condition if using the first approach. However, KCS can be formulated as a linear program with a very sparse constraint matrix, whereas the first approach involves a completely dense constraint matrix. Hence, algorithms that benefit from sparse problem representation, such as interior point methods (IPMs), are expected to have computational advantages for the KCS problem. We numerically demonstrate that KCS combined with IPMs is up to 10 times faster than vanilla IPMs and state-of-the-art methods such as \(\ell _1\_\ell _s\) and Mirror Prox regardless of the sparsity level or problem size.  相似文献   

15.
Algorithms for the regularization of ill-conditioned least squares problems   总被引:1,自引:0,他引:1  
Two regularization methods for ill-conditioned least squares problems are studied from the point of view of numerical efficiency. The regularization methods are formulated as quadratically constrained least squares problems, and it is shown that if they are transformed into a certain standard form, very efficient algorithms can be used for their solution. New algorithms are given, both for the transformation and for the regularization methods in standard form. A comparison to previous algorithms is made and it is shown that the overall efficiency (in terms of the number of arithmetic operations) of the new algorithms is better.  相似文献   

16.
We discuss adaptive sparse grid algorithms for stochastic differential equations with a particular focus on applications to electromagnetic scattering by structures with holes of uncertain size, location, and quantity. Stochastic collocation (SC) methods are used in combination with an adaptive sparse grid approach based on nested Gauss-Patterson grids. As an error estimator we demonstrate how the nested structure allows an effective error estimation through Richardson extrapolation. This is shown to allow excellent error estimation and it also provides an efficient means by which to estimate the solution at the next level of the refinement. We introduce an adaptive approach for the computation of problems with discrete random variables and demonstrate its efficiency for scattering problems with a random number of holes. The results are compared with results based on Monte Carlo methods and with Stroud based integration, confirming the accuracy and efficiency of the proposed techniques.  相似文献   

17.
在用多项式进行曲线拟合等实际问题中,需要求解以范德蒙型矩阵VT为系数阵的线性方程组VTx=b的最小二乘解.  相似文献   

18.
A class of Orthomin-type methods for linear systems based on conjugate residuals is extended to a form suitable for solving a least squares problem with weight. In these algorithms a mapping matrix as preconditioner is brought into use. We also give a necessary and sufficient condition for the convergence of the algorithm. Furthermore, we also study the construction of the mapping matrix for which the necessary and sufficient condition holds.  相似文献   

19.
By deconvolution we mean the solution of a linear first-kind integral equation with a convolution-type kernel, i.e., a kernel that depends only on the difference between the two independent variables. Deconvolution problems are special cases of linear first-kind Fredholm integral equations, whose treatment requires the use of regularization methods. The corresponding computational problem takes the form of structured matrix problem with a Toeplitz or block Toeplitz coefficient matrix. The aim of this paper is to present a tutorial survey of numerical algorithms for the practical treatment of these discretized deconvolution problems, with emphasis on methods that take the special structure of the matrix into account. Wherever possible, analogies to classical DFT-based deconvolution problems are drawn. Among other things, we present direct methods for regularization with Toeplitz matrices, and we show how Toeplitz matrix–vector products are computed by means of FFT, being useful in iterative methods. We also introduce the Kronecker product and show how it is used in the discretization and solution of 2-D deconvolution problems whose variables separate.  相似文献   

20.
In variational data assimilation a least‐squares objective function is minimised to obtain the most likely state of a dynamical system. This objective function combines observation and prior (or background) data weighted by their respective error statistics. In numerical weather prediction, data assimilation is used to estimate the current atmospheric state, which then serves as an initial condition for a forecast. New developments in the treatment of observation uncertainties have recently been shown to cause convergence problems for this least‐squares minimisation. This is important for operational numerical weather prediction centres due to the time constraints of producing regular forecasts. The condition number of the Hessian of the objective function can be used as a proxy to investigate the speed of convergence of the least‐squares minimisation. In this paper we develop novel theoretical bounds on the condition number of the Hessian. These new bounds depend on the minimum eigenvalue of the observation error covariance matrix and the ratio of background error variance to observation error variance. Numerical tests in a linear setting show that the location of observation measurements has an important effect on the condition number of the Hessian. We identify that the conditioning of the problem is related to the complex interactions between observation error covariance and background error covariance matrices. Increased understanding of the role of each constituent matrix in the conditioning of the Hessian will prove useful for informing the choice of correlated observation error covariance matrix and observation location, particularly for practical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号