首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Y. Zhao 《Chromatographia》2000,51(3-4):231-234
Summary A new chelating reagent 2-thiophenaldehyde-4-phenyl-3-thiosemicarbazone (TAPT) has been examined for high performance liquid chromatographic (HPLC) separations of cobalt (II), copper(II) and iron (II) or cobalt (II), nickel (II), iron (II), copper (II) and mercury (II) as metal chelates on a C18, 5μm column (250×4 mm i.d.) The chelates were eluted isocratically with methanol: acetonitrile: water containing sodium acetate and tetrabutylammonium bromide (TBA), and detected at 254 nm. A solvent extraction procedure was developed for simultaneous determination of the metals with detection limits within 0.02–2.5 μ g.mL−1. The method was applied to the determination of copper, cobalt and iron in natural waters.  相似文献   

2.
Four new complexes of 2,3,4-trimethoxybenzoic acid anion with manganese(II), cobalt(II), nickel(II) and copper(II) cations were synthesized, analysed and characterized by standard chemical and physical methods. 2,3,4-Trimethoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) are polycrystalline compounds with colours typical for M(II) ions. The carboxylate group in the anhydrous complexes of Mn(II), Co(II) and Ni(II) is monodentate and in that of Cu(II) monohydrate is bidentate bridging one. The anhydrous complexes of Mn(II), Co(II) and Ni(II) heated in air to 1273 K are stable up to 505–517 K. Next in the range of 505–1205 K they decompose to the following oxides: Mn3O4, CoO, NiO. The complex of Cu(II) is stable up to 390 K, and next in the range of 390–443 K it loses one molecule of water. The final product of its decomposition is CuO. The solubility in water at 293 K is of the order of 10–3 mol dm–3 for the Mn(II) complex and 10–4 mol dm–3 for Co(II), Ni(II) and Cu(II) complexes. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in 2,3,4-trimethoxybenzoates experimentally determined in the range of 77–300 K change from 5.64–6.57 μB (for Mn2+), 4.73–5.17 μB (for Co2+), 3.26–3.35 μB (for Ni2+) and 0.27–1.42 μB (for Cu2+). 2,3,4-Trimethoxybenzoates of Mn(II), Co(II) and Ni(II) follow the Curie–Weiss law, whereas that of Cu(II) forms a dimer.  相似文献   

3.
A new aroyl-hydrazone, 2-pyridine carboxaldehyde-derived hydrazone ligand and its cobalt(II) (1) and vanadium(V) (2) complexes were prepared. The structures of these compounds were investigated using elemental analysis, spectral (IR, UV), and X-ray diffraction measurements. The electrochemical properties of the complexes were studied by cyclic voltammetry. The hydrazone ligand acted as tridentate and coordinated to vanadium and cobalt via N-imine, N-pyridine, and O-benzohydrazide atoms. The Co(II) complex crystallizes in the monoclinic system, space group P21/c, and has a binuclear structure. Chloride ions behave as the linking bridge and a tridentate hydrazine ligand HL and water as the terminal capping ligands. The central Co(II) ion has distorted octahedral geometry. The vanadium(V) complex crystallizes in the monoclinic crystal system, space group P21/n, and can be described as having highly distorted trigonal-bipyramidal coordination. The geometries and electronic properties of the complexes were also obtained using DFT and TD-DFT calculations.  相似文献   

4.
The tripodal ligand 4-(2′-pyridylmthyl)-4-azaheptane-1,7-diamine has been prepared by reaction of 2-aminemethyl pyridine with acrylonitrile, followed by the reduction of the nitrile groups. Copper(II), nickel(II), zinc(II), cobalt(III) and chromium(III) complexes of the ligand have been prepared and characterized and the crystal structures of the complexes [CuLCl]ClO4 and [NiL(MeCN)2](ClO4)2 determined. The copper complex is five coordinate with approximate square pyramidal stereochemistry with the apical position occupied by a primary amine donor. The nickel complex is octahedral with the pyridine nitrogen donor lying trans to an acetonitrile ligand.  相似文献   

5.
New Schiff bases, N,N′-bis(salicylidene)-4-aminobenzylamine (H2L1), N,N′-bis(3-methoxysalicylidene)-4-aminobenzylamine (H2L2), and N,N′-bis(4-hydroxysalicylidene)-4-aminobenzylamine (H2L3), with their nickel(II), cobalt(II), and copper(II) complexes have been synthesized and characterized by elemental analyses, electronic absorption, FT-IR, magnetic susceptibility, and conductance measurements. For the ligands, 1H and 13C NMR and mass spectra were obtained. The tetradentate ligands coordinate to the metal ions through the phenolic oxygen and azomethine nitrogens. The keto-enol tautomeric forms of the Schiff bases H2L1, H2L2, and H2L3 have been investigated in polar and apolar solvents. All compounds were non-electrolytes in DMSO (~10?3 M) according to the conductance measurements. Antimicrobial activities of the Schiff bases and their complexes have been tested against Acinobacter baumannii, Pseudomonas aeruginosa, Micrococcus luteus, Bacillus megaterium, Corynebacterium xerosis, Staphylococcus aureus, Escherichia coli, Candida albicans, Rhodotorula rubra, and Kluyveromyces marxianus by the disc diffusion method; biological activity increases on complexation.  相似文献   

6.

3-Carboxylacetonehydroxamic acid (CAHA) and its iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes were synthesized and characterized by elemental analysis, UV-Vis and IR spectra and magnetic susceptibility. The pK a1 and pK a2 values of the ligand in aqueous solution were found to be 6.5 ± 0.1 and 8.6 ± 0.1, which correspond to dissociation of carboxyl and hydroxamic protons, respectively. The dianion CAH acts as a tetradentate ligand through the hydroxamate and carboxylate groups and coordinates to the divalent metal ions, forming coordination polymers with a metal-to-ligand ratio of 1 : 1 in the solid state. FTIR spectra and thermal decomposition of the ligand and its metal complexes were recorded and briefly discussed. The electrochemical behavior of the complexes was investigated by square wave voltammetry and cyclic voltammetry at neutral pH. In contrast to the solid state, the iron(II) and copper(II) cations form stable complex species with a metal-to-ligand ratio of 1 : 2 in solution. The iron(II), cobalt(II) and nickel(II) complexes show two-electron irreversible reduction behavior, while the copper(II) and zinc(II) complexes undergo quasi-reversible and reversible electrode reactions, respectively. The stability constants of the complexes were determined by square wave voltammetry.  相似文献   

7.
The reagent bis(isovalerylacetone)ethylenediimine(H2IVA2en) has been examined for HPLC separation and UV determination of cobalt, copper, iron and platinum using off-line precolumn derivatization and extraction in chloroform. The complexes of cobalt(II), cobalt(III), iron(II), iron(III) and the reagent have been subsequently separated on a Microsorb C-18 column. The complexes were eluted isocratically using ternary mixtures of methanol/water/acetonitrile. Detection was achieved by UV monitoring. Detection limits for Co(II), Co(III), Fe(II) and Fe(III) were 2.5–5.0 ng/injection, based on 0.5–1.0 g/ml with 5 l/injection. The concentration of cobalt(II) and cobalt(III) in aqueous solution have been determined. The presence of oxovanadium(IV), platinum(II), and nickel(II) did not affect the determinations. The HPLC method developed has been applied to the determination of cobalt, copper, iron and platinum in pharmaceutical preparations at the 30 g/g to 15 mg/g level and the obtained results were compared to those of atomic absorption spectrometry.  相似文献   

8.
Summary Complexes of furan and thiophene azo-oximes with iron(II), cobalt(III), nickel(II) and copper(II) have been prepared and characterised. Iron(II), cobalt(III) and copper(II) complexes are diamagnetic in the solid state. The diamagnetism of the copper(II) chelates is suggestive of antiferromagnetic interaction between two copper centres.1H n.m.r. spectral data suggest atrans-octahedral geometry for the tris-chelates of cobalt(III). Nickel(II) complexes are paramagnetic, in contrast to the diamagnetism of the analogous complexes of arylazooximes. The electronic spectra are suggestive of octahedral geometry for the iron(II), cobalt(III) and nickel(II) complexes, andD 4h -symmetry for copper(II). Infrared data indicate N-bonding of the oximino-group to the metal ions.  相似文献   

9.
The cleavage of poly(vinyl alcohol) in dimethyl sulfoxide at 42°C has been measured viscometrically in the presence of tert-butyl hydroperoxide and metal complexes. Phthalocyanine complexes of copper(II), iron(III), cobalt(II), and vanadium as VO(II) as well as hemin, hematin, chlorophyllin, and cytochrome c were used. The rates of decomposition of tert-butyl hydroperoxide in the presence of these metal complexes were measured idometrically. These data are compared to results obtained with other metal complexes in similar reactions.  相似文献   

10.
合成了两种新型三齿多吡啶钴(II)和钌(II)的混配配合物[Co(TolylTPy)(H2Bzimpy)]Cl2 [TolylTPy=4'-对甲基苯 基-2,2':6',2'-三联吡啶, H2Bzimpy=2,6-二(苯并咪唑-2)吡啶] (A)和Ru(TolylTPy)(Bzimpy) (B). 用元素分析, IR, 1H NMR等对它们进行了表征, 测定了配合物B的晶体结构, 用电子吸收光谱、荧光光谱等研究了配合物与小牛胸腺DNA(CTDNA)的相互作用及其对pBR322 DNA的断裂作用. 结果表明, 配合物A和B与CTDNA的作用属静电结合, 凝胶电泳实验说明配合物A在310 nm光辐射15 min, 可使超螺旋pBR322 DNA断裂为开环缺口型和线型DNA.  相似文献   

11.
An asymmetric bidentate Schiff-base ligand (2-hydroxybenzyl-2-furylmethyl)imine (L–OH) was prepared. Three complexes derived from L–OH were synthesized by treating an ethanolic solution of the appropriate ligand with an equimolar amount of metallic salt. Three complexes, Cu2(L–O?)2Cl2 (1), Ni(L–O?)2 (2) and Co(L–O?)3 (3), have been structurally characterized through elemental analysis, IR, UV spectra and thermogravimetric analysis. Single crystal X-ray diffraction shows metal ions and ligands reacted with different proportions 1?:?1, 1?:?2 and 1?:?3, respectively, so copper(II), nickel(II), and cobalt(III) have different geometries.  相似文献   

12.
Schiff-base complexes of cobalt(II), nickel(II), copper(II) and, zinc(II) with 3-ethoxysalicyliden-p-aminoacetophenoneoxime (HL) were prepared and characterized on the basis of elemental analyses, IR, 1H- and 13C-NMR, electronic spectra, magnetic susceptibility measurements, molar conductivity and thermogravimetric analyses (TGA). A tetrahedral geometry has been assigned to the complexes.  相似文献   

13.
A new vic-dioxime ligand, N,N′-bis(aminopyreneglyoxime) (LH2), and its copper(II), nickel(II) and cobalt(II) metal complexes were synthesized and characterized by elemental analyses, IR, UVVIS and 1H and 13C NMR spectra (for the ligand). Mononuclear complexes were synthesized by a reaction of ligand (LH2) and salts of Co(II), Ni(II), and Cu(II) in ethanol. The complexes have the metal-ligand ratio of 1: 2 and metals are coordinated by N,N′ atoms of vicinal dioximes. The ligand acts in a polydentate fashion bending through nitrogen atoms in the presence of a base, as do most vic-dioximes. Detection of a H-bonding in the Co(II), Ni(II), and Cu(II) complexes by IR revealed the square-planar MN4 coordination of mononuclear complexes. Fluorescent properties of the ligand and its complexes arise from pyrene units conjugated with a vic-dioxime moiety. Fluorescence emission spectra of the ligand showed a drastic decrease in its fluorescence intensity upon metal binding. The electrochemical properties of the complexes were studied by the cyclic voltammetry technique. The nickel complex displayed an irreversible oxidation process while the copper complex exhibited a quasi-reversible oxidation and reduction processes based on the copper Cu(II)/Cu(III) and Cu(II)/Cu(I) couples, respectively.  相似文献   

14.
Acetamidomalondihydroxamate (K2AcAMDH) and its manganese(II), iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes were synthesized and characterized by elemental analysis, UV–VIS, IR and magnetic susceptibility. The pK a1 and pK a2 values of the dihydroxamic acid in aqueous solution were found to be 8.0?±?0.1 and 9.7?±?0.1. The dihydroxamate anion AcAMDH behaves as a tetradentate bridging ligand through both hydroxamate groups, forming complexes with a metal to ligand ratio of 1?:?1 in the solid state. The FTIR spectra and thermal decompositions of the ligand and its metal complexes were recorded. The redox behavior of the complexes was investigated in aqueous solution by square wave voltammetry and cyclic voltammetry at neutral pH. In contrast to the solid state, in solution the copper(II) and zinc(II) ions form stable complex species with a metal to ligand ratio of 1?:?2. The iron(II) and nickel(II) complexes show a two-electron irreversible reduction behavior, while the copper(II) and zinc(II) complexes undergo reversible electrode reactions. The stability constants of the complexes were determined by square wave voltammetry.  相似文献   

15.
A series of 2-aminosubstituted (5Z)-3-phenyl-5-(pyridine-2-ylmethylene)-3,5-dihydro-4H-imidazole-4-ones (L) was prepared by the reaction of the corresponding 2-alkylthio-3,5-dihydro-4H-imidazole-4-ones with morpholine or piperidine in the presence of ytterbium(III) triflate. The resulting ligands were subsequently reacted with CuCl2·2H2O and CoCl2·6H2O to give the corresponding copper(II) and cobalt(II) complexes, respectively. Analysis revealed that the complexes were formed with an LMCl2 (M = Cu, Co)-type composition in all cases. The structures of the three cobalt complexes prepared in this way were determined by X-ray crystallography. The results revealed that the cobalt ions in these complexes were tetrahedrally coordinated to two chloride anions and two nitrogen atoms from the pyridine and imidazole moieties of the ligand. The electrochemical properties of the ligands and their complexes were evaluated by cyclic voltammetry, and the results revealed that the first stage in the reduction of the Co(II) and Cu(II) complexes involved the reversible formation of the corresponding Co(I) and Cu(I) complexes, respectively. The cytotoxicity activities of the organic ligands and their complexes were evaluated against several cancer cell lines, including MCF-7, A549 and HEK293 cells. The copper complexes of the organic ligands bearing a phenyl or allyl moiety at their N(3) position together with a piperidine substituent at the 2-position of their imidazolone ring exhibited the greatest cytotoxicity of all of the compounds tested in the current study.  相似文献   

16.
Cobalt(II), nickel(II), and copper(II) complexes containing 5,12-di(4-bromophenyl)-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L1) and 5,12-diphenyl-7,14-dimethyl-1,2,4,8,9,11-hexaazacyclotetradeca-7,14-diene-3,10-dione (H2L2) have been synthesized. All complexes were characterized by elemental analysis, MALDI TOF-MS spectrometry, and electronic absorption spectroscopy. The crystal structures of two compounds, [Cu2(H2L1)Cl4]n and [NiL2], were determined by X-ray powder diffraction. In the polymeric [Cu2(H2L1)Cl4]n, the Cu2Cl4 units and H2L1 molecules are situated on inversion centers. Each Cu(II) has a distorted trigonal-bipyramidal coordination environment formed by N and O from H2L1 [Cu–N 2.340(14)?Å, Cu–O 1.952(11)?Å], two bridging chlorides [Cu–Cl 2.332(5), 2.279(5)?Å] and one terminal chloride [Cu–Cl 2.320(6)?Å]. In the [NiL2] complex, the Ni(II) situated on inversion center has a distorted square-planar coordination environment formed by four nitrogens from L2 [Ni–N 1.860(11), 1.900(11)?Å].  相似文献   

17.
The new pyrazole ligand 5-(2-hydroxyphenyl)-3-methyl-1-(2-pyridylo)-1H-pyrazole-4-phosphonic acid dimethyl ester (2a) has been used to obtain a series of platinum(II), palladium(II) and copper(II) complexes (3a7a) as potential anticancer compounds. The molecular structures of the platinum(II) and copper(II) complexes 3a and 6a have been determined by X-ray crystallography. The cytotoxicity of the phosphonic ligand 2a and its carboxylic analog 2b as well as their complexes has been evaluated on leukemia and melanoma cell lines. Copper(II) complexes were found to be more efficient in the induction of melanoma cell death than the platinum(II) or palladium(II) complexes. Cytotoxic effectiveness of compound 7b against melanoma WM-115 cells was two times better than that of cisplatin. The reaction of compound 5b with 9-methylguanine has been studied.  相似文献   

18.
For a fundamental study on the development of novel extraction divalent metal, the extraction behaviour of copper(II), cobalt(II) and nickel(II) is studied with salicylidèneaniline (SAN). The phenol group in the Schiff base moiety leads to a large increase in the percentage of transition metal ions. SAN has both good reactivity towards metal ions and solubility in organic solvents. The solvent extraction of copper(II), cobalt(II) and nickel(II) with salicylidèneaniline from sulphate media is studied with the following parameters: pH, concentration of the extractant and the nature of diluent. The stoichiometry coefficients of the extracted species are determined by the slope analysis method. The extraction reaction proceeds by cation exchange mechanism and the extracted species are: CuL2HL, CoL2HL and NiL2. The extaction constants are evaluated for the different diluents. Under suitable conditions of pH, the solvent extraction of cobalt(II) and nickel(II) in different diluents leads to third phase formation. This tendency is confirmed from numerical extraction constants for both metal cations (log?K ex?=??15.10?±?0.03 for nickel(II) in CHCl3) and (log?K ex?=??12.56?±?0.04 for cobalt(II) in CHCl3). The extraction efficiency is found to follow the order Cu(II)?>?Co(II)?>?Ni(II).  相似文献   

19.
A series of homo‐, heterodinuclear and homotrinuclear copper(II) complexes containing a new Schiff base ligand and 1,10‐phenanthroline were synthesized. Based on results of elemental analyses, FTIR, 1H‐ and 13C‐NMR spectra, conductivity measurements and magnetic susceptibility measurements, the complexes had general compositions {[Cu(L)(H2O)M(phen)2](ClO4)2 [M = Cu(II), Mn(II), Co(II)]} and {[Cu3(L)2(H2O)2](ClO4)2}. The metal:L:phen ratio is 2:1:2 for the dinuclear copper(II) complexes and the metal:L ratio was 3:2 for the trinuclear copper(II) complex. The liquid–liquid extraction of various transition metal cations [Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pb(II), Cd(II), Hg(II)] from the aqueous phase to the organic phase was carried out using the diimine–dioxime ligand. It was concluded that the ligand can effectively be used in solvent extraction of copper(II) from the aqueous phase to the organic phase. Furthermore, catalytic activitiy of the complexes for the disproportionation of hydrogen peroxide was also investigated in the presence of imidazole. Dinuclear copper(II)–manganese(II) complex has some similarity to manganese catalase in structure and activity. The interaction between these complexes and DNA has also been investigated by agarose gel electrophoresis; we found that the homo‐ and heterodinuclear copper complexes can cleave supercoiled pBR322 DNA to nicked and linear forms in the presence of H2O2. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Ternary complexes of copper(II) with 2-aminomethylthiophenyl-4-bromosalicylaldehyde (ATS) and some amino acids have been isolated and characterized by elemental analyses, IR, magnetic moment, molar conductance, UV–vis, mass spectra, and ESR. The proposed general formulas of the prepared complexes are [Cu(ATS)(AA)]·nH2O (where AA?=?glycine, alanine, and valine). The low molar conductance values suggest the non-electrolytic nature of the complexes. IR spectra show that ATS is coordinated to copper in a bidentate manner through azomethine-N and phenolic-OH. The amino acids also are monobasic bidentate ligands via amino and ionized carboxylate groups. The magnetic and spectral data indicate the square-planar geometry of Cu(II) complexes. The geometry of the Cu(II) complexes has been fully optimized using parameterized PM3 semiempirical method. The Cu–N bond length is longer than that of Cu–O in the isolated complexes. Also, information is obtained from calculations of molecular parameters for all complexes including net dipole moment of the metal complexes, values of binding energy, and lipophilicity value (log P). The antimicrobial activity studies indicate significant inhibitory activity of complex 3 against the selected types of bacteria. The mixed ligand complexes have also been studied in solution state. Protonation constants of ATS and amino acids were determined by potentiometric titration in 50% (v/v) DMSO–water solution at ionic strength of 0.1?M NaCl. ATS has two protonation constants. The binary and ternary complexes of copper(II) involving ATS and some selected amino acids (glycine, alanine, and valine) were examined. Copper(II) forms [Cu(ATS)], [Cu(ATS)2], [Cu(AA)], [Cu(AA)2], and [Cu(ATS)(AA)] complexes. The ternary complexes are formed in a simultaneous mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号