首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the formation mechanism of HXeCCXeH in a Xe matrix. Our experimental results show that the HXeCCXeH molecules are formed in the secondary reactions involving HXeCC radicals. The experimental data on the formation of HXeCCXeH is fully explained based on the model involving the HXeCC+Xe+H-->HXeCCXeH reaction. This reaction is the first case when a noble-gas hydride molecule is formed from another noble-gas molecule. In addition, we investigate the (12)C/(13)C isotope effect on the vibrational properties of organo-noble-gas hydrides (HKrCCH, HXeCCH, HXeCC, and HXeCCXeH) in noble-gas matrixes. The present experimental results and ab initio calculations on carbon isotope shifts of the vibrational modes support the previous assignments of these molecules. Upon (12)C to (13)C isotope substitution, we observed a pronounced effect on the H-Kr stretching mode of HKrCCH (downshift of 1.0-3.6 cm(-1), depending on the matrix site) and a small anomalous shift (+0.1 cm(-1)) of the H-Xe stretching mode of HXeCCH and HXeCCXeH.  相似文献   

2.
The title reaction forms electronically excited HSO(Ã2A′) directly, with considerable vibrational and rotational excitation as well. The internal excitation of the HSO fragment is the maximum possible consistent with the concurrent formation of an O2(1Δg) molecule as the other reaction product. The observed vibrational excitation peaks in the υ′= 2 level of the υ3 mode. No evidence about possible excitation of the other vibrational modes of HSO could be obtained.  相似文献   

3.
The dissociative chemisorption of N\begin{document}$ _2 $\end{document} is the rate-limiting step for ammonia synthesis in industry. Here, we investigated the role of initially vibrational excitation and rotational excitation of N\begin{document}$ _2 $\end{document} for its reactivity on the Fe(111) surface, based on a recently developed six-dimensional potential energy surface. Six-dimensional quantum dynamics study was carried out to investigate the effect of vibrational excitation for incidence energy below 1.6 eV, due to significant quantum effects for this reaction. The effects of vibrational and rotational excitations at high incidence energies were revealed by quasiclassical trajectory calculations. We found that raising the translational energy can enhance the dissociation probability to some extent, however, the vibrational excitation or rotational excitation can promote dissociation more efficiently than the same amount of translational energy. This study provides valuable insight into the mode-specific dynamics of this heavy diatom-surface reaction.  相似文献   

4.
Initial state-selected reaction probabilities for the H+CH(4)→H(2)+CH(3) reaction are computed for vanishing total angular momentum by full-dimensional calculations employing the multiconfigurational time-dependent Hartree approach. An ensemble of wave packets completely describing reactivity for total energies up to 0.58 eV is constructed in the transition state region by diagonalization of the thermal flux operator. These wave packets are then propagated into the reactant asymptotic region to obtain the initial state-selected reaction probabilities. Reaction probabilities for reactants in all rotational states of the vibrational 1A(1), 1F(2), and 1E levels of methane are presented. Vibrational excitation is found to decrease reactivity when reaction probabilities at equivalent total energies are compared but to increase reaction probabilities when the comparison is done at the basis of equivalent collision energies. Only a fraction of the initial vibrational energy can be utilized to promote the reaction. The effect of rotational excitation on the reactivity differs depending on the initial vibrational state of methane. For the 1A(1) and 1F(2) vibrational states of methane, rotational excitation decreases the reaction probability even when comparing reaction probabilities at equivalent collision energies. In contrast, rotational energy is even more efficient than translational energy in increasing the reaction probability when the reaction starts from the 1E vibrational state of methane. All findings can be explained employing a transition state based interpretation of the reaction process.  相似文献   

5.
A state-to-state dynamics study was performed at a collision energy of 1.53 eV to analyze the effect of the C-H stretch mode excitation on the dynamics of the gas-phase H+CHD3 reaction, which can evolve along two channels, H-abstraction, CD3+H2, and D-abstraction, CHD2+HD. Quasi-classical trajectory calculations were performed on an analytical potential energy surface constructed previously by our group. First, strong coupling between different vibrational modes in the entry channel was observed; i.e., the reaction is non-adiabatic. Second, we found that the C-H stretch mode excitation has little influence on the product rotational distributions for both channels, and on the vibrational distribution for the CD3+H2 channel. However, it has significant influence on the product vibrational distribution for the CHD2+HD channel, where the C-H stretch excitation is maintained in the products, i.e., the reaction shows mode selectivity, reproducing the experimental evidence. Third, the C-H stretch excitation by one quantum increases the reactivity of the vibrational ground-state, in agreement with experiment. Fourth, the state-to-state angular distributions of the CD3 and CHD2 products are reported, finding that for the reactant ground-state the products are practically sideways, whereas the C-H excitation yields a more forward scattering.  相似文献   

6.
The title reaction is investigated by co-expanding a mixture of Cl2 and CH2D2 into a vacuum chamber and initiating the reaction by photolyzing Cl2 with linearly polarized 355 nm light. Excitation of the first C-H overtone of CH2D2 leads to a preference for hydrogen abstraction over deuterium abstraction by at least a factor of 20, whereas excitation of the first C-D overtone of CH2D2 reverses this preference by at least a factor of 10. Reactions with CH2D2 prepared in a local mode containing two quanta in one C-H oscillator /2000>- or in a local mode containing one quantum each in two C-H oscillators /1100> lead to products with significantly different rotational, vibrational, and angular distributions, although the vibrational energy for each mode is nearly identical. The Cl+CH2D2/2000>- reaction yields methyl radical products primarily in their ground state, whereas the Cl+CH2D2/1100> reaction yields methyl radical products that are C-H stretch excited. The HCl(v=1) rotational distribution from the Cl+CH2D2/2000>- reaction is significantly hotter than the HCl(v=1) rotational distribution from the Cl+CH2D2/1100> reaction, and the HCl(v=1) differential cross-section (DCS) of the Cl+CH2D2/2000>- reaction is more broadly side scattered than the HCl(v=1) DCS of the Cl+CH2D2/1100> reaction. The results can be explained by a simple spectator model and by noting that the /2000>- mode leads to a wider cone of acceptance for the reaction than the /1100> mode. These measurements represent the first example of mode selectivity observed in a differential cross section, and they demonstrate that vibrational excitation can be used to direct the reaction pathway of the Cl+CH2D2 reaction.  相似文献   

7.
We present in this paper a time-dependent quantum wave packet calculation of the initial state selected reaction probability for H + Cl2 based on the GHNS potential energy surface with total angular momentumJ = 0. The effects of the translational, vibrational and rotational excitation of Cl2 on the reaction probability have been investigated. In a broad region of the translational energy, the rotational excitation enhances the reaction probability while the vibrational excitation depresses the reaction probability. The theoretical results agree well with the fact that it is an early down-hill reaction.  相似文献   

8.
We present in this paper a time-dependent quantum wave packet calculation of the initial state selected reaction probability for H + Cl2 based on the GHNS potential energy surface with total angular momentumJ = 0. The effects of the translational, vibrational and rotational excitation of Cl2 on the reaction probability have been investigated. In a broad region of the translational energy, the rotational excitation enhances the reaction probability while the vibrational excitation depresses the reaction probability. The theoretical results agree well with the fact that it is an early down-hill reaction.  相似文献   

9.
Excitation functions from quasiclassical trajectory calculations on the H + H2O --> OH + H2, H + HF --> F + H2, and H + H'F --> H' + HF reactions indicate a different behavior at low and high vibrational excitation of the breaking bond. When the reactant tri- or diatomic molecule is in vibrational ground state or in a low vibrationally excited state, all these reactions are activated; i.e., there is a nonzero threshold energy below which there is no reaction. In contrast, at high-stretch excited-states capture-type behavior is observed; i.e., with decreasing translational energy the reactive cross-section diverges. The latter induces extreme vibrational enhancement of the thermal rate consistent with the experiments. The results indicate that the speed-up observed at high vibrational excitation is beyond the applicability of Polanyi's rules in their common form; instead, it can be interpreted in terms of an attractive potential acting on the attacking H atom when it approaches the reactant with a stretched X-H bond.  相似文献   

10.
To understand the effect of different vibrational and rotational modes of reactant to enhance the reactivity of the O + HO2 → OH + O2 reaction, we revisited this important atmospheric reaction. We report here a quasi-classical trajectory (QCT) study of the reaction dynamics on a recently developed full-dimensional potential energy surface (PES). Our previous work has indicated that this reaction has two pathways, the H abstraction (HA) channel and the O abstraction (OA) channel, which lead to totally different product energy distribution. In this work, we identified that the vibrational excitation of the OH stretching (v1) mode of HO2 is the switch of the HA channel at low collision energy; meanwhile, the rotational excitation can also greatly change the branching ratio of the two pathways. With the excitation of v1 mode, the original negligible HA channel controlled by the tight transition state becomes quite important. This work presents an approach to control the branching ratio via collaboration between vibrational and rotational excitation and will enrich the knowledge of the O + HO2 reaction in atmospheric chemistry and physics.  相似文献   

11.
An experimental study of plasmachemical reaction involving CH4 and N2 molecules in rf discharge was studied in order to know the effect of vibrational excitation of N2 molecules. When the relative nitrogen concentration was greater than 0.8, the main product of CH4 decomposition was HCN, and the rate of methane decomposition at this condition was faster than that one in pure methane. These results could be confirmed through the mass spectroscopic method. The reason for these results is the vibrational energy of N2 excited by rf discharge. The chain reaction mechanisms of producing HCN by vibrational excitation of N2 were examined closely through numerical simulation. The rate-controlling step was the dissociation reaction of excited nitrogen molecule to the atomic nitrogen, so the process of HCN synthesis was limited by the value of reaction constant, kN.  相似文献   

12.
The analysis of the observed OH (υ = 0, 1) concentration in the laser enhanced reactions of HCl (υ = 1, 2) with O(3P) atoms demonstrates that vibrational energy in excess of the thermal activation energy barrier continues to enhance the reaction rate. This reaction also exhibits a preferential conversion of reactant vibrational excitation into product vibrational excitation.  相似文献   

13.
We present in this paper a time-dependent quantum wave packet calculation of the initial state selected reaction probability for H + CI2 based on the GHNS potential energy surface with total angular momentum J= 0. The effects of the translational, vibrational and rotational excitation of CI2 on the reaction probability have been investigated. In a broad region of the translational energy, the rotational excitation enhances the reaction probability while the vibrational excitation depresses the reaction probability. The theoretical results agree well with the fact that it is an early down-hill reaction.  相似文献   

14.
15.
Reactions of HOD(+) with CO(2) have been studied for HOD(+) in its ground state, and with one quantum of excitation in each of its vibrational modes: (001)--predominantly OH stretch, 0.396 eV; (010)--bend, 0.153 eV; and (100)--predominantly OD stretch, 0.293 eV. Integral cross sections and product recoil velocities were recorded for collision energies from threshold to 3 eV. The cross sections for both H(+) and D(+) transfer rise with increasing collision energy from threshold to ~1 eV, then become weakly dependent of the collision energy. All three vibrational modes enhance the total reactivity, but quite mode specifically. The H(+) transfer reaction is enhanced by OH stretch excitation, whereas OD stretch excitation has little effect. Conversely, the D(+) transfer reaction is enhanced by OD stretch excitation, while the OH stretch has little effect. Excitation of the bend strongly enhances both channels. The effects of the stretch excitations are consistent with previous studies of neutral HOD mode-selective chemistry, and can be at least qualitatively understood in terms of a late barrier to product formation. The fact that bend excitation produces the largest overall enhancement is surprising, because this is the lowest energy excitation, and is not obviously connected with the reaction coordinates for either H(+) or D(+) transfer. A rationalization in terms of the effects of water distortion on the potential surface is proposed.  相似文献   

16.
Ab initio potential energy surfaces and the corresponding analytical energy functions of the ground 1A' and excited 2A' states for the Li(2(2)P) plus H(2) reaction are constructed. Quasiclassical trajectory calculations on the fitted energy functions are performed to characterize the reactions of Li(2(2)P) with H(2)(v = 0, j = 1) and H(2)(v = 1, j = 1) as well as the reaction when the vibrational energy is replaced by collision energy. For simplicity, the transition probability is assumed to be unity when the trajectories go through the crossing seam region and change to the lower surface. The calculated rotational distributions of LiH(v = 0) for both H(2)(v = 0, j = 1) and H(2)(v = 1, j = 1) reactions are single-peaked with the maximum population at j' = 7, consistent with the previous observation. The vibrational excitation of H(2)(v = 1) may enhance the reaction cross section of LiH(v' = 0) by about 200 times, as compared to a result of 93-107 reported in the experimental measurements. In contrast, the enhancement is 3.1, if the same amount of energy is deposited in the translational states. This endothermic reaction can be considered as an analog of late barrier. According to the trajectory analysis, the vibrational excitation enlarges the H-H distance in the entrance channel to facilitate the reaction, but the excess energy may not open up additional reaction configuration.  相似文献   

17.
The C(2)H + O((3)P) --> CH(A) + CO reaction is investigated using Fourier transform visible emission spectroscopy. The O((3)P) and C(2)H radicals are produced by simultaneous 193 nm photolysis of SO(2) and C(2)H(2) precursors, respectively. The nascent vibrational and rotational distributions of the CH(A) product are obtained under time-resolved, but quasi-steady-state, conditions facilitated by the short lifetime of the CH(A) emission. The vibrational temperature of the CH(A) product is found to be appreciably hotter (2800 +/- 100 K) than the rotational distributions in the v' = 0 (1400 +/- 100 K) and v' = 1 (1250 +/- 250 K) levels. The results suggest that the reaction may proceed through an electronically excited HCCO() intermediate; moreover, the vibrational excitation compared to rotational excitation is higher than expected based on a statistical distribution of energy and may be the result of geometrical changes in the transition state. The CH(A) emission is also observed in a C(2)H(2)/O/H reaction mixture using a microwave discharge apparatus to form O atoms, with subsequent H atom production. The nascent rotational and vibrational distributions of the CH(A) determined by the microwave discharge apparatus are very similar to the CH(A) distributions obtained in the photodissociation experiment. The results support the idea that the C(2)H + O((3)P) reaction may play a role in low-pressure C(2)H(2)/O/H flames, as previously concluded.  相似文献   

18.
The barrier for the hydrogen exchange reaction increases with the bend angle of H3. The implications for the dynamics of the reaction are explored on two levels. The static one uses the concept of a relaxed potential. This provides for a convenient, yet realistic representation. Itallows for the response of the molecule to the approaching atom. Among features made very evident by the relaxed potential is the possibility that hotH atoms can react by insertion. It also shows the widening of the cone of acceptance upon reagent vibrational excitation. On the dynamical level, classical trajectory computations are used to illustrate the dependence of the reactivity on the angle of attack and on the translational and vibrational excitation of the reagents. Detailed product distributions are generally not sensitive to the attack angle. An exception is the HD/H2 branching ratio in H + HD reactive collisions.  相似文献   

19.
A method is proposed for studying the influence of vibrational excitation of radicals on their reactivity in bimolecular reactions. Investigations of the reaction CF2Cl + HCl → CF2 HCl + Cl by this method show for the first time that this reaction is accelerated by vibrational excitation of CF2Cl* radicals. Under the experimental conditions, it was found that k*1/k1 ? 6.0.  相似文献   

20.
(i) Reagent vibrational energy is converted into product vibrational excitation with high efficiency in the thermoneutral reaction Cl + OH2 → H  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号