首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fluorescence spectrum of Na2 induced by the 4879.86 A line of an Argon ion laser has been analyzed with special emphasis on determination of accurate relative intensities. We have observed nineteen fluorescence series for the B1pi(u) --> X1sigma(g)+ band system. Some series are reported for the first time. The radiative transition probabilities for the observed fluorescence series were calculated using hybrid potential energy curves for the B1pi(u) and X1sigma(g)+ states constructed up to dissociation and a B-X transition dipole moment function. Radiative lifetimes for the rovibrational levels of the upper states pumped by the laser line have also been calculated. The transition probabilities and lifetimes agree with the corresponding observed measurements usually within the experimental uncertainty. From the rotational satellite structure with deltaJ' = +/- 1, +/- 2...+/- 20, for some nu'-bands of the most intense fluorescence series induced by emission from the vibrational-rotational levels: nu' = 6, J' = 43 and v' = 9, J' = 56, collision-induced transition rates and average cross sections have been obtained.  相似文献   

2.
Cyclohexanone oxime (CHO) and cyclopentanone oxime (CPO) in the vapor phase undergo N-OH bond scission upon excitation at 193 nm to produce OH, which was detected state selectively employing laser-induced fluorescence. The measured energy distribution between fragments for both oximes suggests that in CHO the OH produced is mostly vibrationally cold, with moderate rotational excitation, whereas in CPO the OH fragment is also formed in v' = 1 (~2%). The rotational population of OH (v' = 0, J') from CHO is characterized by a rotational temperature of 1440 ± 80 K, whereas the rotational populations of OH (v' = 0, J') and OH (v' = 1, J') from CPO are characterized by temperatures of 1360 ± 90 K and 930 ± 170 K, respectively. A high fraction of the available energy is partitioned to the relative translation of the fragments with f(T) values of 0.25 and 0.22 for CHO and CPO, respectively. In the case of CHO, the Λ-doublet states of the nascent OH radical are populated almost equally in lower rotational quantum levels N', with a preference for Π(+) (A') states for higher N'. However, there is no preference for either of the two spin orbit states Π(3/2) and Π(1/2) of OH. The nascent OH product in CPO is equally distributed in both Λ-doublet states of Π(+) (A') and Π(-) (A') for all N', but has a preference for the Π(3/2) spin orbit state. Experimental work in combination with theoretical calculations suggests that both CHO and CPO molecules at 193 nm are excited to the S(2) state, which undergoes nonradiative relaxation to the T(2) state. Subsequently, molecules undergo the N-OH bond dissociation from the T(2) state with an exit barrier to produce OH (v', J').  相似文献   

3.
Mass spectra were recorded for one-colour resonance enhanced multiphoton ionization (REMPI) of H(i)Br (i = 79, 81) for the two-photon resonance excitation region 79,040-80,300 cm(-1) to obtain two-dimensional REMPI data. The data were analysed in terms of rotational line positions, intensities, and line-widths. Quantitative analysis of the data relevant to near-resonance interactions between the F(1)Δ(2)(v' = 1) and V(1)Σ(+)(v' = m + 7) states gives interaction strengths, fractional state mixing, and parameters relevant to dissociation of the F state. Qualitative analysis further reveals the nature of state interactions between ion-pair states and the E(1)Σ(+) (v' = 1) and H(1)Σ(+)(v' = 0) Rydberg states in terms of relative strengths and J' dependences. Large variety in line-widths, depending on electronic states and J' quantum numbers, is indicative of number of different predissociation channels. The relationship between line-widths, line-shifts, and signal intensities reveals dissociation mechanisms involving ion-pair to Rydberg state interactions prior to direct or indirect predissociations of Rydberg states. Quantum interference effects are found to be important. Moreover, observed bromine atom (2 + 1) REMPI signals support the importance of Rydberg state predissociation channels. A band system, not previously observed in REMPI, was observed and assigned to the k(3)Π(0)(v' = 0) ←← X transition with band origin 80,038 cm(-1) and rotational parameter B(v('))=7.238 cm(-1).  相似文献   

4.
We present a fundamentally new approach for measuring the transition dipole moment of molecular transitions, which combines the benefits of quantum interference effects, such as the Autler-Townes splitting, with the familiar R-centroid approximation. This method is superior to other experimental methods for determining the absolute value of the R-dependent electronic transition dipole moment function mu(e)(R), since it requires only an accurate measurement of the coupling laser electric field amplitude and the determination of the Rabi frequency from an Autler-Townes split fluorescence spectral line. We illustrate this method by measuring the transition dipole moment matrix element for the Na2 A 1Sigma(u)+ (v' = 25, J' = 20e)-X 1Sigma(g)+ (v" = 38, J" = 21e) rovibronic transition and compare our experimental results with our ab initio calculations. We have compared the three-level (cascade) and four-level (extended Lambda) excitation schemes and found that the latter is preferable in this case for two reasons. First, this excitation scheme takes advantage of the fact that the coupling field lower level is outside the thermal population range. As a result vibrational levels with larger wave function amplitudes at the outer turning point of vibration lead to larger transition dipole moment matrix elements and Rabi frequencies than those accessible from the equilibrium internuclear distance of the thermal population distribution. Second, the coupling laser can be "tuned" to different rovibronic transitions in order to determine the internuclear distance dependence of the electronic transition dipole moment function in the region of the R-centroid of each coupling laser transition. Thus the internuclear distance dependence of the transition moment function mu(e)(R) can be determined at several very different values of the R centroid. The measured transition dipole moment matrix element for the Na2 A 1Sigma(u)+ (v' = 25, J' = 20e)-X 1Sigma(g)+ (v" = 38, J" = 21e) transition is 5.5+/-0.2 D compared to our ab initio value of 5.9 D. By using the R-centroid approximation for this transition the corresponding experimental electronic transition dipole moment is 9.72 D at Rc = 4.81 A, in good agreement with our ab initio value of 10.55 D.  相似文献   

5.
Reported herein is a combination of experimental and DFT/TDDFT theoretical investigations of the ground and excited states of 1,4,8,11,15,18,22,25-Octabutoxyphthalocyaninato-nickel(II), NiPc(BuO)(8), and the dynamics of its deactivation after excitation into the S(1)(pi,pi) state in toluene solution. According to X-ray crystallographic analysis NiPc(BuO)(8) has a highly saddled structure in the solid state. However, DFT studies suggest that in solution the complex is likely to flap from one D(2)(d)-saddled conformation to the opposite one through a D(4)(h)-planar structure. The spectral and kinetic changes for the complex in toluene are understood in terms of the 730 nm excitation light generating a primarily excited S(1) (pi,pi) state that transforms initially into a vibrationally hot (3)(d(z)2,d(x)2(-)(y)2) state. Cooling to the zeroth state is complete after ca. 8 ps. The cold (d,d) state converted to its daughter state, the (3)LMCT (pi,d(x)2(-)(y)2), which itself decays to the ground state with a lifetime of 640 ps. The proposed deactivation mechanism applies to the D(2)(d)-saddled and the D(4)(h)-planar structure as well. The results presented here for NiPc(BuO)(8) suggest that in nickel phthalocyanines the (1,3)LMCT (pi,d(x)2(-)(y)2) states may provide effective routes for radiationless deactivation of the (1,3)(pi,pi) states.  相似文献   

6.
Adiabatic and diabatic potential energy curves and the permanent and transition dipole moments of the low-lying electronic states of the LiRb molecule dissociating into Rb(5s, 5p, 4d, 6s, 6p, 5d, 7s, 6d) + Li(2s, 2p) have been investigated. The molecular calculations are performed with an ab initio approach based on nonempirical pseudopotentials for Rb(+) and Li(+) cores, parametrized l-dependent core polarization potentials and full configuration interaction calculations. The derived spectroscopic constants (R(e), D(e), T(e), ω(e), ω(e)x(e), and B(e)) of the ground state and lower excited states are in good agreement with the available theoretical works. However, the 8-10(1)Σ(+), 8-10(3)Σ(+), 6(1,3)Π, and 3(1,3)Δ excited states are studied for the first time. In addition, to the potential energy, accurate permanent and transition dipole moments have been determined for a wide interval of internuclear distances. The permanent dipole moment of LiRb has revealed ionic characters both relating to electron transfer and yielding Li(-)Rb(+) and Li(+)Rb(-) arrangements. The diabatic potential energy for the (1,3)Σ(+), (1,3)Π, and (1,3)Δ symmetries has been performed for this molecule for the first time. The diabatization method is based on variational effective Hamiltonian theory and effective metric, where the adiabatic and diabatic states are connected by an appropriate unitary transformation.  相似文献   

7.
The He...I (35)Cl intermolecular vibrational levels with n'=0-6 that are bound within the He+ICl(B,v'=3) potential [A. B. McCoy, J. P. Darr, D. S. Boucher, P. R. Winter, M. D. Bradke, and R. A. Loomis, J. Chem. Phys. 120, 2677 (2004)] are identified in laser-induced fluorescence experiments performed at very low temperatures within a supersonic expansion. Comparisons of the positions and intensities of these lines with the excitation spectra, calculated using potential surfaces to describe the interactions between the helium atom and ICl in its ground and excited state, assist in the assignments. Based on these comparisons the excited state potential was rescaled so that the experimental and calculated J'=0 energies agree to within the experimental uncertainties for all but the lowest, n'=0, intermolecular level. Two-laser, action, and pump-probe spectroscopy experiments indicate that the bound He...I (35)Cl(B,v'=3) intermolecular vibrational levels undergo vibrational predissociation forming rotationally excited I (35)Cl(B,v'=2,j') products with distributions that depend upon the initial intermolecular vibrational level excited. Action spectra recorded in the ICl B-X, 2-0 region while monitoring the Deltav=0, I (35)Cl(B,v'=2) channel reveal two additional dissociation mechanisms for the He...I (35)Cl(B,v') excited state complexes: rotational predissociation of discrete metastable states lying slightly above the He+I (35)Cl(B,v'=2) asymptote and direct dissociation that occurs when the linear conformer is excited to the continuum of states above the same asymptote. The rotational predissociation pathway forms I (35)Cl(B,v'=2,j') products in all of the rotational states energetically accessible. The direct dissociation mechanism yields very cold rotational product state distributions; for instance, the average rotational energy in the product state distribution measured when the linear complexes are prepared 20 cm(-1) above the dissociation limit is only 1.51 cm(-1), representing only 7.6% of the available energy.  相似文献   

8.
Line oscillator strengths in the 20 electric dipole-allowed bands of (14)N(2) in the 89.7-93.5 nm (111480-106950 cm(-1)) region are reported from photoabsorption measurements at an instrumental resolution of approximately 6 mA (0.7 cm(-1)) full width at half maximum. The absorption spectrum comprises transitions to vibrational levels of the 3p sigma(u) c(4)' (1)Sigma(u)(+), 3p pi(u) c(3) (1)Pi(u), and 3s sigma(g) o(3) (1)Pi(u) Rydberg states and of the b' (1)Sigma(u)(+) and b (1)Pi(u) valence states. The J dependences of band f values derived from the experimental line f values are reported as polynomials in J'(J'+1) and are extrapolated to J'=0 in order to facilitate comparisons with results of coupled Schrodinger-equation calculations. Most bands in this study are characterized by a strong J dependence of the band f values and display anomalous P-, Q-, and R-branch intensity patterns. Predissociation line widths, which are reported for 11 bands, also exhibit strong J dependences. The f value and line width patterns can inform current efforts to develop comprehensive spectroscopic models that incorporate rotational effects and predissociation mechanisms, and they are critical for the construction of realistic atmospheric radiative-transfer models.  相似文献   

9.
Line oscillator strengths in 16 electric dipole-allowed bands of 14N2 in the 93.5-99.5 nm (106,950-100,500 cm(-1)) region have been measured at an instrumental resolution of 6.5 x 10(-4) nm (0.7 cm(-1)). The transitions terminate on vibrational levels of the 3psigma 1Sigma u (+), 3ppi 1Pi u, and 3ssigma 1Pi u Rydberg states and of the b' 1Sigma u (+) and b 1Pi u valence states. The J dependences of band f values derived from the experimental line f values are reported as polynomials in J'(J'+1) and are extrapolated to J'=0 in order to facilitate comparisons with results of coupled-Schrodinger-equation calculations that do not take into account rotational interactions. Most bands in this study reveal a marked J dependence of the f values and/or display anomalous P-, Q- and R-branch intensity patterns. These patterns should help inform future spectroscopic models that incorporate rotational effects, and these are critical for the construction of realistic atmospheric radiative transfer models. Linewidth measurements are reported for four bands. Information provided by the J dependences of the experimental linewidths should be of use in the development of a more complete understanding of the predissociation mechanisms in N2.  相似文献   

10.
Vibronic optical emissions from CS(A1pi --> X1sigma+) and CS(a3pi --> X1sigma+) transitions have been identified from dissociative recombination (DR) of CS2(+) and HCS2(+) plasmas. All of the spectra were taken in flowing afterglow plasmas using an optical monochromator in the UV-visible wavelength region of 180-800 nm. For the CS(A --> X) and CS(a --> X) emissions, the relative vibrational distributions have been calculated for v' < 5 and v' < 3 in both types of plasmas for the CS(A) and CS(a) states, respectively. Both recombining plasmas show a population inversion from the v' = 0 to v' = 1 level of the CS(A) state, similar to other observations of the CS(A) state populations, which were generated using two other energetic processes. The possibility of spectroscopic cascading is addressed, such that transitions from upper level electronic states into the CS(A) and CS(a) states would affect the relative vibrational distribution, and there is no spectroscopic evidence supporting the cascading effect. Additionally, excited-state transitions from neutral sulfur (S(5S(2)0 --> 3P(2)) and S(5S(2)0 --> 3P(1))) and the products of ion-molecule reactions (CS(B1sigma+ --> A1pi), CS(+)(B2sigma+ --> A2pi(i)), and CS2(+) (A2pi(u) --> X2pi(g))) have been observed and are discussed.  相似文献   

11.
A study of the radiative lifetimes calculation of the Na2 B1piu state is presented. RKR electronic potentials are considered. The studied vibrational levels are for v' = 0-33 (B1piu) and v" = 0-65 (chi1sigmag+). The rotation is considered for values of J' = 1-225 (B1piu). The Einstein emission coefficients are calculated for the specified B1piu rovibrational levels (for Q line and R, P lines, for all ground state vibrational levels). With the inverse of Einstein emission coefficients sum, the radiative lifetimes are calculated. These calculated lifetimes are in good agreement with the experimental and previously calculated (with RKR potentials) lifetimes, but now great extension of considered rovibrational levels is considered. The bound-free contribution is irrelevant for Na2 lifetimes of the B1piu state. The perturbation between Na2 B1piu and alpha1sigmau+ states is considered.  相似文献   

12.
We perform one- and two-photon high resolution spectroscopy on ultracold samples of RbCs Feshbach molecules with the aim to identify a suitable route for efficient ground-state transfer in the quantum-gas regime to produce quantum gases of dipolar RbCs ground-state molecules. One-photon loss spectroscopy allows us to probe deeply bound rovibrational levels of the mixed excited (A(1)Σ(+)-b(3)Π)0(+) molecular states. Two-photon dark state spectroscopy connects the initial Feshbach state to the rovibronic ground state. We determine the binding energy of the lowest rovibrational level |v' = 0, J' = 0> of the X(1)Σ(+) ground state to be D = 3811.5755(16) cm(-1), a 300-fold improvement in accuracy with respect to previous data. We are now in the position to perform stimulated two-photon Raman transfer to the rovibronic ground state.  相似文献   

13.
High resolution optical spectroscopy has been used to study a molecular beam of molybdenum monocarbide (MoC). The Stark effect of the R(e)(0) and Q(fe)(1) branch features of the [18.6] (3)Pi(1)-X (3)Sigma(-)(0,0) band system of (98)MoC were analyzed to determine the permanent electric dipole moments mu(e) of 2.68(2) and 6.07(18) D for the [18.6] (3)Pi(1)(nu=0) and X (3)Sigma(-)(nu=0) states, respectively. The dipole moments are compared with the experimental value for ruthenium monocarbide [T. C. Steimle et al., J. Chem. Phys. 118, 2620 (2003)] and with theoretical predictions. A molecular orbital correlation diagram is used to interpret the observed and predicted trends of ground state mu(e) values for the 4d-metal monocarbides series.  相似文献   

14.
Collisional deactivation of the 5d7p (3)D1 state of Ba by noble gases is studied by time- and wavelength-resolved fluorescence techniques. A pulsed, frequency-doubled dye laser at 273.9 nm excites the 5d7p (3)D1 level from the ground state, and fluorescence at 364.1 and 366.6 nm from the 5d7p (3)D1 --> 6s5d (3)D1 and 5d7p (3)D1 --> 6s5d (3)D2 transitions, respectively, is monitored in real time to obtain the deactivation rate constants. At 835 K these rate constants are as follows: He, (1.69 +/- 0.08) x 10(-9) cm(3) s(-1); Ne, (3.93 +/- 0.14) x 10(-10) cm(3) s(-1); Ar, (4.53 +/- 0.15) x 10(-10) cm(3) s(-1); Kr, (4.64 +/- 0.13) x 10(-10) cm(3) s(-1); Xe, (5.59 +/- 0.22) x 10(-10) cm(3) s(-1). From time-resolved 5d7p (3)D1 emission in the absence of noble gas and from the intercepts of the quenching plots, the lifetime of this state is determined to be 100 +/- 1 ns. Using time- and wavelength-resolved Ba emission with a low background pressure of noble gas, radiative lifetimes of several near-resonant states are determined from the exponential rise of the fluorescence signals. These results are as follows: 5d6d (3)D3, 28 +/- 3 ns; 5d7p (3)P1, 46 +/- 2 ns; 5d6d (3)G3, 21.5 +/- 0.8 ns; 5d7p (3)F3, 48 +/- 1 ns. Integrated fluorescence signals are used to infer the relative rate constants for population transfer from the 5d7p (3)D1 state to eleven near-resonant fine structure states.  相似文献   

15.
Potential energy curves, energy parameters, and spectroscopic values for the X (2)Sigma(+), A (2)Pi, B (2)Sigma(+), a (4)Pi, and b (4)Sigma(+), states of CaH have been calculated using the multireference configuration interaction and coupled cluster levels of theory, while employing quantitative basis sets (of augmented quintuple-zeta quality) and taking also into account core/valence correlation and one-electron relativistic effects. For the ground (X (2)Sigma(+)) and the first two following excited states (A (2)Pi, B (2)Sigma(+)) of CaH, the permanent electric dipole moments have been calculated. Our best finite field dipole moment of the A (2)Pi state of 2.425 D (upsilon = 0) is in very good agreement with the experimental literature value of 2.372(12) D. However, a discrepancy is observed in the dipole moment of the X (2)Sigma(+) state. Our most extensive calculation gives mu = 2.623 D (upsilon = 0), which is considerably smaller than the experimental value of mu = 2.94(16) D (upsilon = 0). Small van der Waals minima were found for both "repulsive" quartet states. Spectroscopic constants and energy parameters for all states are in remarkable agreement with available experimental values.  相似文献   

16.
Coupled cluster calculations with a carefully designed basis set have been performed to obtain both static, alpha, and dynamic at 514.5 nm, alpha(514.5 nm), dipole polarizability surfaces of water. We employed a medium size basis set (13s10p6d3f9s6p2d1f)[9s7p6d3f6s5p2d1f] consisting of 157 contracted Gaussian-type functions that yields values near the Hartree-Fock limit for alpha [G. Maroulis, J. Chem. Phys. 94, 1182 (1991)]. The alpha and alpha(514.5 nm) surfaces were able to reproduce all the experimentally available information about the dipole polarizability of water, especially the Raman spectra of gaseous H(2)O, D(2)O, and HDO. Vibrational averages for the dipole polarizability of water molecule are also reported.  相似文献   

17.
The electronic states of diazomethane in the region 3.00-8.00 eV have been characterized by ab initio calculations, and electronic transitions in the region 6.32-7.30 eV have been examined experimentally using a combination of 2 + 1 REMPI spectroscopy and photoelectron imaging in a molecular beam. In the examined region, three Rydberg states of 3p character contribute to the transitions, 2(1)A2(3p(y) <-- pi), 2(1)B1(3p(z) <-- pi), and 3(1)A1(3p(x) <-- pi). The former two states are of mostly pure Rydberg character and exhibit a resolved K structure, whereas the 3(1)A1(3p(x) <-- pi) state is mixed with the valence 2(1)A1(pi* <-- pi) state, which is unbound and is strongly predissociative. Analyses of photoelectron kinetic energy distributions indicate that the ground vibrational level of the 2(1)B1(3p(z)) state is mixed with the 2(1)A2(3p(y)) nu(9) level, which is of B1 vibronic symmetry. The other 2(1)A2(3p(y)) vibronic states exhibit pure Rydberg character, generating ions in single vibrational levels. The photoelectron spectra of the 3(1)A1(3p(x) <-- pi) state, on the other hand, give rise to many states of the ion as a result of strong mixing with the valence state, as evidenced also in the ab initio calculations. The equilibrium geometries of the electronic states of neutral diazomethane were calculated by CCSD(T), using the cc-pVTZ basis, and by B3LYP, using the 6-311G(2df,p) basis. Geometry and frequencies of the ground state of the cation were calculated by CCSD(T)/cc-pVTZ, using the unrestricted (UHF) reference. Vertical excitation energies were calculated using EOM-CCSD/6-311(3+,+)G* at the B3LYP optimized geometry. The theoretical results show that the 2(1)A2(3p(y) <-- pi) and 2(1)B1(3p(z) <-- pi) states have geometries similar to the ion, which has C(2v) symmetry, with slight differences due to the interactions of the electron in the 3p orbital with the nuclei charge distributions. The geometry of the 3(1)A1(3p(x) <-- pi) state is quite different and has Cs symmetry. The experimental and theoretical results agree very well, both in regard to excitation energies and to vibrational modes of the ion.  相似文献   

18.
Novel cluster anions Li2F- and Li6F- with alkalide character have been studied in the present paper. In contrast to a typical neutral alkalide, Li2F- contains a F- anion instead of the neutral ligand and forms an alkalide anion F-Li+Li-. In addition to a F- anion ligand, Li6F- contains a Li3+ superalkali cation instead of the alkali metal cation and a Li3- superalkali anion instead of the alkali metal anion, and this alkalide anion can be denoted by F-Li3+Li3-, which is supported by NBO charge results. The results indicate that the F- anion can polarize not only the Li atom but also the Li3 superalkali to form alkalide anions with excess electrons. For Li2F-, two linear structures (1Sigma+ and 3Sigma+ states) are obtained. For Li6F-, the structure of the 1A1 state is a trigonal antiprism capped by the F- anion with C3v symmetry, while the structure of the 7A' state is a slightly distorted trigonal antiprism with Cs symmetry. Due to the excess electrons on the alkali metal and superalkali anions (Li- and Li3-), the alkalide anions Li2F- and Li6F- have large first hyperpolarizabilities (beta0=1.116x10(4)-1.764x10(5) au). For the spin multiplicity effect on electric properties, in these two alkalide anions, the values of the static electric properties, especially the first hyperpolarizabilities, of the high spin states are larger than the corresponding values of the low spin states. For the substitution effect of superalkali atoms, in the two singlet states, as the Li3 superalkalis substitute the Li atoms, the value of the mean of polarizability increases, while the values of dipole moment and the first hyperpolarizability decrease.  相似文献   

19.
The photoinduced hydrogen (or deuterium) detachment reaction of thiophenol (C(6)H(5)SH) or thiophenol-d(1) (C(6)H(5)SD) pumped at 243 nm has been investigated using the H (D) ion velocity map imaging technique. Photodissociation products, corresponding to the two distinct and anisotropic rings observed in the H (or D) ion images, are identified as the two lowest electronic states of phenylthiyl radical (C(6)H(5)S). Ab initio calculations show that the singly occupied molecular orbital of the phenylthiyl radical is localized on the sulfur atom and it is oriented either perpendicular or parallel to the molecular plane for the ground (B(1)) and the first excited state (B(2)) species, respectively. The experimental energy separation between these two states is 2600+/-200 cm(-1) in excellent agreement with the authors' theoretical prediction of 2674 cm(-1) at the CASPT2 level. The experimental anisotropy parameter (beta) of -1.0+/-0.05 at the large translational energy of D from the C(6)H(5)SD dissociation indicates that the transition dipole moment associated with this optical transition at 243 nm is perpendicular to the dissociating S-D bond, which in turn suggests an ultrafast D+C(6)H(5)S(B(1)) dissociation channel on a repulsive potential energy surface. The reduced anisotropy parameter of -0.76+/-0.04 observed at the smaller translational energy of D suggests that the D+C(6)H(5)S(B(2)) channel may proceed on adiabatic reaction paths resulting from the coupling of the initially excited state to other low-lying electronic states encountered along the reaction coordinate. Detailed high level ab initio calculations adopting multireference wave functions reveal that the C(6)H(5)S(B(1)) channel may be directly accessed via a (1)(n(pi),sigma(*)) photoexcitation at 243 nm while the key feature of the photodissociation dynamics of the C(6)H(5)S(B(2)) channel is the involvement of the (3)(n(pi),pi(*))-->(3)(n(sigma),sigma(*)) profile as well as the spin-orbit induced avoided crossing between the ground and the (3)(n(pi),sigma(*)) state. The S-D bond dissociation energy of thiophenol-d(1) is accurately estimated to be D(0)=79.6+/-0.3 kcalmol. The S-H bond dissociation energy is also estimated to give D(0)=76.8+/-0.3 kcalmol, which is smaller than previously reported ones by at least 2 kcalmol. The C-H bond of the benzene moiety is found to give rise to the H fragment. Ring opening reactions induced by the pi-pi(*)n(pi)-pi(*) transitions followed by internal conversion may be responsible for the isotropic broad translational energy distribution of fragments.  相似文献   

20.
The electroabsorption (EA) spectra of directly meso-meso-linked porphyrin arrays (Zn, n = 1-3) have been investigated by means of the sum-over-states (SOS) approach at the INDO/S-SCI level theory. The experimental EA spectra of Zn (n > or = 2) exhibit an unusual second-derivative line shape at the exciton split low-energy B(x) band in contrast to the first-derivative spectrum of Z1, which is readily ascribed to a quadratic Stark shift of the B (Soret) band. Although the second-derivative line shape is usually attributed to a difference in the permanent dipole moment (Deltamu) between the ground and excited states, it should be vanishing for Zn due to their essentially D(2)(d) or D(2)(h) symmetry. As pointed out in our previous studies, the interporphyrinic charge-transfer (CT) excited states are accidentally overlapping with the excitonic B bands and the present calculations reveal that the B(x) state is strongly coupled via a transition dipole moment with two such CT states. These situations give rise to a quadratic Stark effect on the B(x) band that is intermediate between Stark shift (first derivative) and Stark broadening (second derivative), and play a central role in establishing the anomalous second derivative nature of the EA spectrum. Moreover, based on the comparison between the theoretical and experimental spectra, there must be an additional factor that further enhances the second derivative nature of the EA spectrum of porphyrin arrays. Discussions on this issue including the preliminary investigations on the role of solvent (PMMA)-induced asymmetry are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号