首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
This paper systematically presents the λ-deformation as the canonical framework of deformation to the dually flat (Hessian) geometry, which has been well established in information geometry. We show that, based on deforming the Legendre duality, all objects in the Hessian case have their correspondence in the λ-deformed case: λ-convexity, λ-conjugation, λ-biorthogonality, λ-logarithmic divergence, λ-exponential and λ-mixture families, etc. In particular, λ-deformation unifies Tsallis and Rényi deformations by relating them to two manifestations of an identical λ-exponential family, under subtractive or divisive probability normalization, respectively. Unlike the different Hessian geometries of the exponential and mixture families, the λ-exponential family, in turn, coincides with the λ-mixture family after a change of random variables. The resulting statistical manifolds, while still carrying a dualistic structure, replace the Hessian metric and a pair of dually flat conjugate affine connections with a conformal Hessian metric and a pair of projectively flat connections carrying constant (nonzero) curvature. Thus, λ-deformation is a canonical framework in generalizing the well-known dually flat Hessian structure of information geometry.  相似文献   

3.
4.
Based on Kedem–Katchalsky formalism, the model equation of the membrane potential (Δψs) generated in a membrane system was derived for the conditions of concentration polarization. In this system, a horizontally oriented electro-neutral biomembrane separates solutions of the same electrolytes at different concentrations. The consequence of concentration polarization is the creation, on both sides of the membrane, of concentration boundary layers. The basic equation of this model includes the unknown ratio of solution concentrations (Ci/Ce) at the membrane/concentration boundary layers. We present the calculation procedure (Ci/Ce) based on novel equations derived in the paper containing the transport parameters of the membrane (Lp, σ, and ω), solutions (ρ, ν), concentration boundary layer thicknesses (δl, δh), concentration Raileigh number (RC), concentration polarization factor (ζs), volume flux (Jv), mechanical pressure difference (ΔP), and ratio of known solution concentrations (Ch/Cl). From the resulting equation, Δψs was calculated for various combinations of the solution concentration ratio (Ch/Cl), the Rayleigh concentration number (RC), the concentration polarization coefficient (ζs), and the hydrostatic pressure difference (ΔP). Calculations were performed for a case where an aqueous NaCl solution with a fixed concentration of 1 mol m−3 (Cl) was on one side of the membrane and on the other side an aqueous NaCl solution with a concentration between 1 and 15 mol m−3 (Ch). It is shown that (Δψs) depends on the value of one of the factors (i.e., ΔP, Ch/Cl, RC and ζs) at a fixed value of the other three.  相似文献   

5.
Solving linear systems of equations is one of the most common and basic problems in classical identification systems. Given a coefficient matrix A and a vector b, the ultimate task is to find the solution x such that Ax=b. Based on the technique of the singular value estimation, the paper proposes a modified quantum scheme to obtain the quantum state |x corresponding to the solution of the linear system of equations in O(κ2rpolylog(mn)/ϵ) time for a general m×n dimensional A, which is superior to existing quantum algorithms, where κ is the condition number, r is the rank of matrix A and ϵ is the precision parameter. Meanwhile, we also design a quantum circuit for the homogeneous linear equations and achieve an exponential improvement. The coefficient matrix A in our scheme is a sparsity-independent and non-square matrix, which can be applied in more general situations. Our research provides a universal quantum linear system solver and can enrich the research scope of quantum computation.  相似文献   

6.
Studies from complex networks have increased in recent years, and different applications have been utilized in geophysics. Seismicity represents a complex and dynamic system that has open questions related to earthquake occurrence. In this work, we carry out an analysis to understand the physical interpretation of two metrics of complex systems: the slope of the probability distribution of connectivity (γ) and the betweenness centrality (BC). To conduct this study, we use seismic datasets recorded from three large earthquakes that occurred in Chile: the Mw8.2 Iquique earthquake (2014), the Mw8.4 Illapel earthquake (2015) and the Mw8.8 Cauquenes earthquake (2010). We find a linear relationship between the b-value and the γ value, with an interesting finding about the ratio between the b-value and γ that gives a value of ∼0.4. We also explore a possible physical meaning of the BC. As a first result, we find that the behaviour of this metric is not the same for the three large earthquakes, and it seems that this metric is not related to the b-value and coupling of the zone. We present the first results about the physical meaning of metrics from complex networks in seismicity. These first results are promising, and we hope to be able to carry out further analyses to understand the physics that these complex network parameters represent in a seismic system.  相似文献   

7.
This study deals with drift parameters estimation problems in the sub-fractional Vasicek process given by dxt=θ(μxt)dt+dStH, with θ>0, μR being unknown and t0; here, SH represents a sub-fractional Brownian motion (sfBm). We introduce new estimators θ^ for θ and μ^ for μ based on discrete time observations and use techniques from Nordin–Peccati analysis. For the proposed estimators θ^ and μ^, strong consistency and the asymptotic normality were established by employing the properties of SH. Moreover, we provide numerical simulations for sfBm and related Vasicek-type process with different values of the Hurst index H.  相似文献   

8.
We use Magnetospheric Multiscale (MMS) data to study electron kinetic entropy per particle Se across Earth’s quasi-perpendicular bow shock. We have selected 22 shock crossings covering a wide range of shock conditions. Measured distribution functions are calibrated and corrected for spacecraft potential, secondary electron contamination, lack of measurements at the lowest energies and electron density measurements based on plasma frequency measurements. All crossings display an increase in electron kinetic entropy across the shock ΔSe being positive or zero within their error margin. There is a strong dependence of ΔSe on the change in electron temperature, ΔTe, and the upstream electron plasma beta, βe. Shocks with large ΔTe have large ΔSe. Shocks with smaller βe are associated with larger ΔSe. We use the values of ΔSe, ΔTe and density change Δne to determine the effective adiabatic index of electrons for each shock crossing. The average effective adiabatic index is γe=1.64±0.07.  相似文献   

9.
A possible detection of sub-solar mass ultra-compact objects would lead to new perspectives on the existence of black holes that are not of astrophysical origin and/or pertain to formation scenarios of exotic ultra-compact objects. Both possibilities open new perspectives for better understanding of our universe. In this work, we investigate the significance of detection of sub-solar mass binaries with components mass in the range: 102M up to 1M, within the expected sensitivity of the ground-based gravitational waves detectors of third generation, viz., the Einstein Telescope (ET) and the Cosmic Explorer (CE). Assuming a minimum of amplitude signal-to-noise ratio for detection, viz., ρ=8, we find that the maximum horizon distances for an ultra-compact binary system with components mass 102M and 1M are 40 Mpc and 1.89 Gpc, respectively, for ET, and 125 Mpc and 5.8 Gpc, respectively, for CE. Other cases are also presented in the text. We derive the merger rate and discuss consequences on the abundances of primordial black hole (PBH), fPBH. Considering the entire mass range [102–1]M, we find fPBH<0.70 (<0.06) for ET (CE), respectively.  相似文献   

10.
Private Information Retrieval (PIR) protocols, which allow the client to obtain data from servers without revealing its request, have many applications such as anonymous communication, media streaming, blockchain security, advertisement, etc. Multi-server PIR protocols, where the database is replicated among the non-colluding servers, provide high efficiency in the information-theoretic setting. Beimel et al. in CCC 12’ (further referred to as BIKO) put forward a paradigm for constructing multi-server PIR, capturing several previous constructions for k3 servers, as well as improving the best-known share complexity for 3-server PIR. A key component there is a share conversion scheme from corresponding linear three-party secret sharing schemes with respect to a certain type of “modified universal” relation. In a useful particular instantiation of the paradigm, they used a share conversion from (2,3)-CNF over Zm to three-additive sharing over Zpβ for primes p1,p2,p where p1p2 and m=p1·p2, and the relation is modified universal relation CSm. They reduced the question of the existence of the share conversion for a triple (p1,p2,p) to the (in)solvability of a certain linear system over Zp, and provided an efficient (in m,logp) construction of such a sharing scheme. Unfortunately, the size of the system is Θ(m2) which entails the infeasibility of a direct solution for big m’s in practice. Paskin-Cherniavsky and Schmerler in 2019 proved the existence of the conversion for the case of odd p1, p2 when p=p1, obtaining in this way infinitely many parameters for which the conversion exists, but also for infinitely many of them it remained open. In this work, using some algebraic techniques from the work of Paskin-Cherniavsky and Schmerler, we prove the existence of the conversion for even m’s in case p=2 (we computed β in this case) and the absence of the conversion for even m’s in case p>2. This does not improve the concrete efficiency of 3-server PIR; however, our result is promising in a broader context of constructing PIR through composition techniques with k3 servers, using the relation CSm where m has more than two prime divisors. Another our suggestion about 3-server PIR is that it’s possible to achieve a shorter server’s response using the relation CSm for extended SmSm. By computer search, in BIKO framework we found several such sets for small m’s which result in share conversion from (2,3)-CNF over Zm to 3-additive secret sharing over Zpβ, where β>0 is several times less than β, which implies several times shorter server’s response. We also suggest that such extended sets Sm can result in better PIR due to the potential existence of matching vector families with the higher Vapnik-Chervonenkis dimension.  相似文献   

11.
Detrended Fluctuation Analysis (DFA) has become a standard method to quantify the correlations and scaling properties of real-world complex time series. For a given scale of observation, DFA provides the function F(), which quantifies the fluctuations of the time series around the local trend, which is substracted (detrended). If the time series exhibits scaling properties, then F()α asymptotically, and the scaling exponent α is typically estimated as the slope of a linear fitting in the logF() vs. log() plot. In this way, α measures the strength of the correlations and characterizes the underlying dynamical system. However, in many cases, and especially in a physiological time series, the scaling behavior is different at short and long scales, resulting in logF() vs. log() plots with two different slopes, α1 at short scales and α2 at large scales of observation. These two exponents are usually associated with the existence of different mechanisms that work at distinct time scales acting on the underlying dynamical system. Here, however, and since the power-law behavior of F() is asymptotic, we question the use of α1 to characterize the correlations at short scales. To this end, we show first that, even for artificial time series with perfect scaling, i.e., with a single exponent α valid for all scales, DFA provides an α1 value that systematically overestimates the true exponent α. In addition, second, when artificial time series with two different scaling exponents at short and large scales are considered, the α1 value provided by DFA not only can severely underestimate or overestimate the true short-scale exponent, but also depends on the value of the large scale exponent. This behavior should prevent the use of α1 to describe the scaling properties at short scales: if DFA is used in two time series with the same scaling behavior at short scales but very different scaling properties at large scales, very different values of α1 will be obtained, although the short scale properties are identical. These artifacts may lead to wrong interpretations when analyzing real-world time series: on the one hand, for time series with truly perfect scaling, the spurious value of α1 could lead to wrongly thinking that there exists some specific mechanism acting only at short time scales in the dynamical system. On the other hand, for time series with true different scaling at short and large scales, the incorrect α1 value would not characterize properly the short scale behavior of the dynamical system.  相似文献   

12.
13.
There is no generally accepted definition for conditional Tsallis entropy. The standard definition of (unconditional) Tsallis entropy depends on a parameter α that converges to the Shannon entropy as α approaches 1. In this paper, we describe three proposed definitions of conditional Tsallis entropy suggested in the literature—their properties are studied and their values, as a function of α, are compared. We also consider another natural proposal for conditional Tsallis entropy and compare it with the existing ones. Lastly, we present an online tool to compute the four conditional Tsallis entropies, given the probability distributions and the value of the parameter α.  相似文献   

14.
We study the contrarian voter model for opinion formation in a society under the influence of an external oscillating propaganda and stochastic noise. Each agent of the population can hold one of two possible opinions on a given issue—against or in favor—and interacts with its neighbors following either an imitation dynamics (voter behavior) or an anti-alignment dynamics (contrarian behavior): each agent adopts the opinion of a random neighbor with a time-dependent probability p(t), or takes the opposite opinion with probability 1p(t). The imitation probability p(t) is controlled by the social temperature T, and varies in time according to a periodic field that mimics the influence of an external propaganda, so that a voter is more prone to adopt an opinion aligned with the field. We simulate the model in complete graph and in lattices, and find that the system exhibits a rich variety of behaviors as T is varied: opinion consensus for T=0, a bimodal behavior for T<Tc, an oscillatory behavior where the mean opinion oscillates in time with the field for T>Tc, and full disorder for T1. The transition temperature Tc vanishes with the population size N as Tc2/lnN in complete graph. In addition, the distribution of residence times tr in the bimodal phase decays approximately as tr3/2. Within the oscillatory regime, we find a stochastic resonance-like phenomenon at a given temperature T*. Furthermore, mean-field analytical results show that the opinion oscillations reach a maximum amplitude at an intermediate temperature, and that exhibit a lag with respect to the field that decreases with T.  相似文献   

15.
In the last decade, much attention has been focused on examining the nonlocality of various quantum networks, which are fundamental for long-distance quantum communications. In this paper, we consider the nonlocality of any forked tree-shaped network, where each node, respectively, shares arbitrary number of bipartite sources with other nodes in the next “layer”. The Bell-type inequalities for such quantum networks are obtained, which are, respectively, satisfied by all (tn1)-local correlations and all local correlations, where tn denotes the total number of nodes in the network. The maximal quantum violations of these inequalities and the robustness to noise in these networks are also discussed. Our network can be seen as a generalization of some known quantum networks.  相似文献   

16.
This article estimates several integral inequalities involving (hm)-convexity via the quantum calculus, through which Important integral inequalities including Simpson-like, midpoint-like, averaged midpoint-trapezoid-like and trapezoid-like are extended. We generalized some quantum integral inequalities for q-differentiable (hm)-convexity. Our results could serve as the refinement and the unification of some classical results existing in the literature by taking the limit q1.  相似文献   

17.
The family of cumulative paired ϕ-entropies offers a wide variety of ordinal dispersion measures, covering many well-known dispersion measures as a special case. After a comprehensive analysis of this family of entropies, we consider the corresponding sample versions and derive their asymptotic distributions for stationary ordinal time series data. Based on an investigation of their asymptotic bias, we propose a family of signed serial dependence measures, which can be understood as weighted types of Cohen’s κ, with the weights being related to the actual choice of ϕ. Again, the asymptotic distribution of the corresponding sample κϕ is derived and applied to test for serial dependence in ordinal time series. Using numerical computations and simulations, the practical relevance of the dispersion and dependence measures is investigated. We conclude with an environmental data example, where the novel ϕ-entropy-related measures are applied to an ordinal time series on the daily level of air quality.  相似文献   

18.
We show that neural networks with an absolute value activation function and with network path norm, network sizes and network weights having logarithmic dependence on 1/ε can ε-approximate functions that are analytic on certain regions of Cd.  相似文献   

19.
We used the blast wave model with the Boltzmann–Gibbs statistics and analyzed the experimental data measured by the NA61/SHINE Collaboration in inelastic (INEL) proton–proton collisions at different rapidity slices at different center-of-mass energies. The particles used in this study were π+, π, K+, K, and p¯. We extracted the kinetic freeze-out temperature, transverse flow velocity, and kinetic freeze-out volume from the transverse momentum spectra of the particles. We observed that the kinetic freeze-out temperature is rapidity and energy dependent, while the transverse flow velocity does not depend on them. Furthermore, we observed that the kinetic freeze-out volume is energy dependent, but it remains constant with changing the rapidity. We also observed that all three parameters are mass dependent. In addition, with the increase of mass, the kinetic freeze-out temperature increases, and the transverse flow velocity, as well as kinetic freeze-out volume decrease.  相似文献   

20.
In this work, we derive Born’s rule from the pilot-wave theory of de Broglie and Bohm. Based on a toy model involving a particle coupled to an environment made of “qubits” (i.e., Bohmian pointers), we show that entanglement together with deterministic chaos leads to a fast relaxation from any statistical distribution ρ(x) of finding a particle at point x to the Born probability law |Ψ(x)|2. Our model is discussed in the context of Boltzmann’s kinetic theory, and we demonstrate a kind of H theorem for the relaxation to the quantum equilibrium regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号