首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Computations are performed on the interaction specificities of tetramethylammonium (TMA) for double-stranded oligonucleotides held in the B conformation. The effects of base sequence and chain length are investigated. In the short oligomers (helices formed from dinucleoside monophosphates and trinucleoside diphosphates), the interaction energies of TMA are larger in the major groove of (dG)n · (dC)n than in the minor groove of either (dA)n · (dT)n or (dA—dT)n. Upon lengthening the oligomers, and owing to the gradual shaping of the grooves of the helix and cumulative effect of the phosphates, TMA is shown to increasingly favor the minor groove of (dA)n · (dT)n with respect to the major groove of (dG)n · (dC)n, with a sizeable energy difference computed at the pentanucleoside hexaphosphate level. The binding of TMA in the minor groove of (dA)n · (dT)n involves stabilizing contacts with several sites, on the bases and on the deoxyriboses. Configurations locating the cation closer to the thymine strand are slightly preferred over configurations locating it closer to the adenine strand.  相似文献   

2.
The ionization of the DNA single and double helices (dA)20, (dT)20, (dAdT)10(dAdT)10 and (dA)20(dT)20, induced by nanosecond pulses at 266 nm, is studied by time-resolved absorption spectroscopy. The variation of the hydrated electron concentration with the absorbed laser intensity shows that, in addition to two-photon ionization, one-photon ionization takes place for (dAdT)10(dAdT)10, (dA)20(dT)20 and (dA)20 but not for (dT)20. The spectra of all adenine-containing oligomers at the microsecond time-scale correspond to the adenine deprotonated radical formed in concentrations comparable to that of the hydrated electron. The quantum yield for one-photon ionization of the oligomers (ca. 10(-3)) is higher by at least 1 order of magnitude than that of dAMP, showing clearly that organization of the bases in single and double helices leads to an important lowering of the ionization potential. The propensity of (dAdT)10(dAdT)10, containing alternating adenine-thymine sequences, to undergo one-photon ionization is lower than that of (dA)20(dT)20 and (dA)20, containing adenine runs. Pairing of the (dA)20 with the complementary strand leads to a decrease of quantum yield for one photon ionization by about a factor of 2.  相似文献   

3.
The molecular electrostatic potential of the triple helix poly(dT)·tpoly(dA)·poly(dT) is calculated, and the results are examined in relation to those obtained for its component double and single helical parts. For the double helix presenting the standard Watson–Crick hydrogen bonds, the deepest potentials are formed on the side of the major groove, a situation similar to that observed in the A-DNA duplex. For the double helix presenting Hoogsteen-type hydrogen bonds the deepest potentials lie in the major groove, on the side of the pyrimidine strand. In the triple helix the deepest potentials are located in the major groove in a narrow zone over the thymine bases of the Watson–Crick pair.  相似文献   

4.
We report on‐the‐fly surface‐hopping dynamics simulations of single adenine embedded in solvated DNA oligomers, (dA)10 and (dA)10·(dT)10. Both model systems are found to decay from the S1 to the S0 state via distinct monomeric channels, on account of the strong hydrogen‐bonding interactions between the Watson–Crick pair in the double‐stranded oligomer. Surprisingly, the decay times (several picoseconds) for the current models are 10 times longer than those of adenine in the gas or aqueous phase, while matching one of the time constants observed experimentally. We discuss possible reasons for these longer decay times, including steric hindrance in the DNA strands, electronic effects of the environment, and the presence of other local excited‐state minima. We present optimized geometries and relative energies for representative S0 and S1 minima as well as conical intersections related to the hopping events. We have also computed steady‐state and time‐dependent fluorescence spectra that may help understand the experimental observations. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
This paper reports the feasibility of free radicals formation from flutamide by using cyclic voltammetry. The electrochemical characteristics and the reactivity of the one-electron reduction product from flutamide in mixed media with thiol compounds and the nuclei acid bases are characterized. Results from this paper show the thermodynamic feasibility of free radical formation expressed for both the cathodic peak potential and the second-order rate constant values. The reactivity of the radical towards thiol compounds (glutathione, cysteamine, N-acetylcysteine) and the nuclei acid base, adenine, thymine and uracil were quantitatively assessed through the calculation of the respective interaction rate constants. Based on these results, the following tentative order of reactivity towards the xeno/endobiotics is as follows: cysteamine > uracil > glutathione > adenine > N-acetylcysteine > thymine. The stability of the nitro radical anion electrochemically generated from flutamide showed a linear dependence with pH.  相似文献   

6.
We characterize the room-temperature adsorption of single-stranded DNA homo-oligonucleotides from solution onto polycrystalline Au films, including competitive adsorption between all possible pairs of unmodified oligomers. Fourier transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopy analysis of the resulting films shows that oligonucleotides adsorb with a strongly base-dependent affinity, adenine (A) > cytosine (C) >/= guanine (G) > thymine (T). In competitive adsorption experiments on Au, oligo(dA) strongly dominates over the other oligonucleotides. The relative adsorption affinity of oligo(dA) is so great that it competes effectively against adsorption of thiolated oligomers and even causes hybridized oligo(dA).oligo(dT) duplexes to denature in the presence of Au.  相似文献   

7.
Abstract— The hydrophobic interactions of bulky polycyclic aromatic hydrocarbons with nucleic acid bases and the formation of noncovalent complexes with DNA are important in the expressions of the mutagenic and carcinogenic potentials of this class of compounds. The fluorescence of the polycyclic aromatic residues can be employed as a probe of these interactions. In this work, the interactions of the (+)-trans stereoisomer of the tetraol 7,8,9,10-tetrahydroxytetrahydrobenzo[a]pyrene (BPT), a hydrolysis product of a highly mutagenic and carcinogenic diol epoxide derivative of benzo[a]pyrene, were studied with 2′-deoxynucleosides in aqueous solution by fluorescence and UV spectroscopic techniques. Ground-state complexes between BPT and the purine derivatives 2′-deoxyguanosine (dG), 2′-deoxyadenosine (dA), and 2′-deoxyinosine (dI) are formed with association constants in the range of ~40–130 M?1 Complex formation with the pyrimidine derivatives 2′-deoxythymidine (dT), 2′-deoxycytidine (dC), and 2′-deoxyuridine (dU) is significantly weaker. Whereas dG is a strong quencher of the fluorescence of BPT by both static and dynamic mechanisms (dynamic quenching rate constant kdyn= [2.5 ± 0.41 × 109M1 s 1, which is close to the estimated diffusion-controlled value of ~ 5 × 109M? 1 s?1), both dA and dI are weak quenchers and form fluorescenceemitting complexes with BPT. The pyrimidine derivatives dC, dU, and dT are efficient dynamic fluorescence quenchers (Kdyn~ [1.5–3.0] × 109M?1 s?1), with a small static quenching component due to complex formation evident only in the case of dT. None of the four nucleosidcs dG, dA, dC and dT are dynamic quenchers of BPT in the triplet excited state; the observed lower yields of triplets are attributed to the quenching of single excited states of BPT by 2′-deoxynucleosides without passing through the triplet manifold of BPT. Possible fluorescence quenching mechanisms involving photoinduced electron transfer are discussed. The strong quenching of the fluorescence of BPT by dG, dC and dT accounts for the low fluorescence yields of BPT-native DNA and of pyrene-DNA complexes.  相似文献   

8.
The stereoselective synthesis of 4-substituted 1H-benzimidazole 2′-deoxyribonucleosides is described. Regioisomeric (N1 and N3) β-D -deoxyribonucleosides 2a–c and 3a–c were formed. 13C-NMR Chemical shifts of the 1H-benzimidazole 2′-deoxy-β-D -ribofuranosides were correlated with point charges of C-atoms as well as with Hammett constants of the exocyclic substituents. Phosphonate and phosphoramidite building blocks of 4-nitro-1H-benzimidazole 2′-deoxyribofuranoside ( 2a ) were prepared (see 4a, b ). Oligonucleotides of the d(A20) type were synthesized in which the two central dA bases were replaced by 4-nitro-1H-benzimidazole residues. They were hybridized with oligomeric dT and related oligomers having the other conventional bases opposite to the 4-nitro-1H-benzimidazole moieties. Within these duplexes ( 12·13, 12·14, 12·15 , and 12·16 ), the destabilization was almost independent of the mismatch which is required for a universal base. The thermodynamic data indicate that the 4-nitro-1H-benzimidazole residues do not form H-bonds with opposite bases but are stabilizing the duplex by stacking interactions and favorable entropic changes.  相似文献   

9.
Oligothymidylates (oligo(dT)'s) with the sequence-specifically-incorporated one-atom-tethered C(5)-nitio-xide-labeled nucleoside 1 were synthesized by the phosphotriester method. Some modifications of the protocol were required to account for the chemical reactivity of the nitroxide, the stability of which was monitored during the synthesis by electron paramagnetic resonance (EPR) spectroscopy. The EPR specific activity (AEPR) of the FPLC-purified nitroxide-labeled oligomers was determined and found to be in agreement with enzymatically prepared spin-labeled nucleic acids. Annealing the nitroxide-labeled oligo(dT)'s to (dA)n or oligo(dA) resulted in different EPR-lineshape changes suggesting a strong coupling of the short-tethered nitroxide to global macro-molecular motion.  相似文献   

10.
Photodimerization reactions of polyacrylate and polymethacrylate derivatives and the dimer model compound containing thymine bases were studied in the presence of adenine derivatives in dimethyl sulfoxide; N,N-dimethylformamide; and dimethyl sulfoxide–ethylene glycol solutions. The photodimerization of thymine bases both in the polymers and in the dimer model compound was found to be quenched by the addition of adenine derivatives. Base-base interaction in the ground state was also studied by ultraviolet (UV) spectroscopy in the three solvents. The quenching of the photodimerizationof thymine bases in the presence of adenine derivatives was discussed in terms of the specific interaction between adenine and thymine bases both in ground and excited states.  相似文献   

11.
采用稳态吸收和荧光光谱、圆二色谱和皮秒时间分辨荧光光谱手段, 研究了5,10,15,20-四[4-(N-甲基吡啶)]卟啉(TMPyP4)与腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C)等4种碱基, 以及相应的核苷、核苷酸和单链DNA的结合能力和光谱学性质. 研究结果发现, 嘌呤与TMPyP4的结合能力比嘧啶的强. 对于某一碱基系列, 结合能力强弱顺序依次为: 碱基~核苷<核苷酸<单链DNA. 时间分辨荧光谱研究发现, 除鸟嘌呤外, 核酸和TMPyP4复合物的荧光动力学均含有快(1~2 ns)和慢(约10 ns)两个衰减过程, 它们分别是由激基复合体和环境极性对激发态TMPyP4分子的影响所致. 单链DNA能诱导TMPyP4产生诱导圆二色信号, 而单分子(碱基、核苷、核苷酸)则无此功能.  相似文献   

12.
The C8-methylguanine (C8mG) lesions are reported to be produced in vivo due to methylation of guanine base of DNA by methyl free (·CH3) radicals derived from the carcinogen 1,2-dimethylhydrazines and tert-butylhydroperoxide. It is believed that C8mG lesions can induce G to T and G to C transversion mutations and deletions. However, the mechanisms of reactions of ·CH3 radicals with DNA bases leading to formation of C8mG and other methylated DNA bases and their biological implications are not properly understood. In the present contribution, we have carried out density functional theory (DFT) calculations to ascertain the various stable methylated derivatives of all the four DNA bases that are formed by the attack of ·CH3 radicals on DNA bases as well as to understand the mechanism of formation of C8mG due to reaction of ·CH3 radicals with the C8 site of guanine. Our calculations reveal that ·CH3 radical would form stable methylated products at the C8 sites of purine bases (guanine and adenine) and at the C5 and C6 sites of pyrimidine bases (cytosine and thymine) by directly attacking to bases. The C8mG is the most stable. This is in agreement with experimental observation. Further, we have found that in absence of any external agents, the C8mG is formed preferably by direct addition of a ·CH3 radical to the C8 site of guanine followed by abstraction of the H8 hydrogen atom by another ·CH3 radical. The barrier energies for these two steps are found to be 18.16 (18.73) and 16.05 (18.54) kcal/mol, respectively, as determined at the M06-2X/6-311+G(d,p) level of theory in gas phase (aqueous media). Thus, the present study explains the mechanism of formation of C8mG.  相似文献   

13.
The distribution of the final base damage was determined within isolated DNA exposed to pulses of 266 nm laser light. Studied lesions included oxidation products arising from biphotonic ionization of DNA bases and pyrimidine dimeric photoproducts arising from monophotonic processes. The distribution of the latter class of damage was found to be correlated with the stability of the DNA duplex. The quantum yield for formation of 8-oxo-7,8-dihydroguanine was much higher than that of other oxidized nucleosides arising from the degradation of thymine and adenine. This observation, together with the shape of the intensity dependence curves, provided evidence for the occurrence of charge-transfer processes within DNA. In addition, increase in the ionic strength of the irradiated DNA and stabilization of the DNA duplex were found to induce a drastic decrease in the yield of thymine and adenine oxidation products. Concurrently, an increase in the yield of 8-oxo-7,8-dihydroguanine was observed. This was rationalized in terms of an increase in the overall charge-transfer efficiency. Therefore, it may be concluded that stabilization of the double-helix favors charge-transfer process toward guanine bases.  相似文献   

14.
Intermolecular proton-transfer processes in the Watson & Crick adenine-thymine Cu+ and Cu2+ cationized base pairs have been studied using the density functional theory (DFT) methods. Cationized systems subject to study are those resulting from cation coordination to the main basic sites of the base pair, N7 and N3 of adenine and O2 of thymine. For Cu+ coordinated to N7 or N3 of adenine, only the double proton-transferred product is found to be stable, similarly to the neutral system. However, when Cu+ interacts with thymine, through the O2 carbonyl atom, the single proton transfer from thymine to adenine becomes thermodynamically spontaneous, and thus rare forms of the DNA bases may spontaneously appear. For Cu2+ cation, important effects on proton-transfer processes appear due to oxidation of the base pair, which stabilizes the different single proton-transfer products. Results for hydrated systems show that the presence of the water molecules interacting with the metal cation (and their mode of coordination) can strongly influence the ability of Cu2+ to induce oxidation on the base pair.  相似文献   

15.
Intra-and intermolecular interactions in acyclic compounds containing nucleotide base (uracil and thymine) derivatives and their macrocyclic analogs (pyrimidinophanes) were studied by IR, UV, luminescence, and NMR spectroscopy. Molecules of these compounds include one or two N3-methylsubstituted or N3-unsubstituted uracil fragment or two adenine fragments linked through a hexamethylene spacer to an uracil, 5,5′-methylenediuracil or diphenylmethane fragment. The examined compounds almost all are characterized by π-π interactions and intramolecular hydrogen bonding between the terminal uracil or adenine fragments. Intramolecular association constants were determined and factors affecting them were discussed. Complex formation of acyclic and macrocyclic ligands with adenine and thymine derivatives was studied. The low values of the association constants were interpreted in terms of a competition between intra-and intermolecular bonding and very labile ligand structure.  相似文献   

16.
The role of adenine (A) derivatives in DNA damage is scarcely studied due to the low electron affinity of base A. Experimental studies demonstrate that low‐energy electron (LEE) attachment to adenine derivatives complexed with amino acids induces barrier‐free proton transfer producing the neutral N7‐hydrogenated adenine radicals rather than conventional anionic species. To explore possible DNA lesions at the A sites under physiological conditions, probable bond ruptures in two models—N7‐hydrogenated 2′‐deoxyadenosine‐3′‐monophosphate (3′‐dA(N7H)MPH) and 2′‐deoxyadenosine‐5′‐monophosphate (5′‐dA(N7H)MPH), without and with LEE attachment—are studied by DFT. In the neutral cases, DNA backbone breakage and base release resulting from C3′?O3′ and N9?C1′ bond ruptures, respectively, by an intramolecular hydrogen‐transfer mechanism are impossible due to the ultrahigh activation energies. On LEE attachment, the respective C3′?O3′ and N9?C1′ bond ruptures in [3′‐dA(N7H)MPH]? and [5′‐dA(N7H)MPH]? anions via a pathway of intramolecular proton transfer (PT) from the C2′ site of 2′‐deoxyribose to the C8 atom of the base moiety become effective, and this indicates that substantial DNA backbone breaks and base release can occur at non‐3′‐end A sites and the 3′‐end A site of a single‐stranded DNA in the physiological environment, respectively. In particular, compared to the results of previous theoretical studies, not only are the electron affinities of 3′‐dA(N7H)MPH and 5′‐dA(N7H)MPH comparable to those of hydrogenated pyrimidine derivatives, but also the lowest energy requirements for the C3′?O3′ and N9‐glycosidic bond ruptures in [3′‐dA(N7H)MPH]? and [5′‐dA(N7H)MPH]? anions, respectively, are comparable to those for the C3′?O3′ and N1‐glycosidic bond cleavages in corresponding anionic hydrogenated pyrimidine derivatives. Thus, it can be concluded that the role of adenine derivatives in single‐stranded DNA damage is equally important to that of pyrimidine derivatives in an irradiated cellular environment.  相似文献   

17.
The C4'-oxidized abasic site (C4-AP) is produced in DNA as a result of oxidative stress. A recent report suggests that this lesion forms interstrand cross-links. Using duplexes in which C4-AP is produced from a synthetic precursor, we show that the lesion produces interstrand cross-links in which both strands are in tact and cross-links in which the C4-AP containing strand is cleaved. The yields of these products are dependent upon the surrounding nucleotide sequence. When C4-AP is opposed by dA, cross-link formation occurs exclusively with an adjacent dA on the 5'-side. Moreover, formation of the lower molecular weight cross-link is promoted by an opposing adenine. When the opposing dA is replaced by dT, the activity of the adenine can be rescued by adding the free base. This is a rare example in which DNA promotes its own modification, an observation that is all the more important because of the biological significance of the product produced.  相似文献   

18.
Earlier theoretical investigations of the mechanism of radiation damage to DNA/RNA nucleobases have claimed OH radical addition as the dominating pathway based solely on energetics. In this study we supplement calculations of energies with the kinetics of all possible reactions with the OH radical through hydrogen abstraction and OH radical addition onto carbon sites, using DFT at the ωB97X‐D/6‐311++G(2df,2pd) level with the Eckart tunneling correction. The overall rate constants for the reaction with adenine, guanine, thymine, and uracil are found to be 2.17×10?12, 5.64×10?11, 2.01×10?11, and 5.03×10?12 cm3 molecules?1 s?1, respectively, which agree exceptionally well with experimental values. We conclude that abstraction of the amine group hydrogen atoms competes with addition onto C8 as the most important reaction pathway for the purine nucleobases, while for the pyrimidine nucleobases addition onto C5 and C6 competes with the abstraction of H1. Thymine shows favourability against abstraction of methyl hydrogens as the dominating pathway based on rate constants. These mechanistic conclusions are partly explained by an analysis of the electrostatic potential together with HOMO and LUMO orbitals of the nucleobases.  相似文献   

19.
We demonstrate how the orientation and ordering of DNA bases in ultrahigh vacuum (UHV) and ambient environments can be determined using complementary spectroscopic methods. Near-edge X-ray absorption fine structure (NEXAFS) with fluorescence detection, X-ray photoelectron (XPS), and Fourier transform infrared (FTIR) spectroscopies are used to quantify the coverage, chemical composition, orientation, and ordering of thymine bases in model self-assembled monolayers of thymine homo-oligonucleotides [oligo(dT)] on gold. We find that, in monolayers of thiol-modified oligo(dT), thymine bases tend to orient parallel to the Au substrate, and this preferential orientation is significantly more pronounced in monolayers of thiolated 5-mers compared to 25-mers. We interpret this preferential orientation as a signature of significant correlations (local ordering) between individual nuleobases, which offers a way to quantify and compare nucleobase interactions in films under both ambient and UHV conditions.  相似文献   

20.
The present work demonstrates a novel signal-off electrochemical method for the determination of DNA methylation and the assay of methyltransferase activity using the electroactive complex [Ru(NH3)6]3+ (RuHex) as a signal transducer. The assay exploits the electrostatic interactions between RuHex and DNA strands. Thiolated single strand DNA1 was firstly self-assembled on a gold electrode via Au–S bonding, followed by hybridization with single strand DNA2 to form double strand DNA containing specific recognition sequence of DNA adenine methylation MTase and methylation-responsive restriction endonuclease Dpn I. The double strand DNA may adsorb lots of electrochemical species ([Ru(NH3)6]3+) via the electrostatic interaction, thus resulting in a high electrochemical signal. In the presence of DNA adenine methylation methyltransferase and S-adenosyl-l-methionine, the formed double strand DNA was methylated by DNA adenine methylation methyltransferase, then the double strand DNA can be cleaved by methylation-responsive restriction endonuclease Dpn I, leading to the dissociation of a large amount of signaling probes from the electrode. As a result, the adsorption amount of RuHex reduced, resulting in a decrease in electrochemical signal. Thus, a sensitive electrochemical method for detection of DNA methylation is proposed. The proposed method yielded a linear response to concentration of Dam MTase ranging from 0.25 to 10 U mL−1 with a detection limit of 0.18 U mL−1 (S/N = 3), which might promise this method as a good candidate for monitoring DNA methylation in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号