首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Analytical letters》2012,45(5):855-873
Abstract

A pair of single chain Fv fragment (scFv) fusion proteins were constructed and characterized. Antibody chips using the pair were designed for sensitive detection of prion protein. Phage displayed antibody library was synthesized by immunizing mice with thioredoxin‐mature bovine prion fusion protein (TrxA‐bPrPc). After five rounds of panning against recombinant bovine prion protein (rb‐PrPc) and ELISA test, two positive clones with high affinity to rb‐PrPc, named Z163 and Z186, were obtained. They were conjugated with a linker‐streptavidin binding protein (SBP) or human IgG1 constant fragment (Fc) to form the scFv fusion protein pair Z186‐L‐SBP/Z163‐Fc. Western blot experiments showed that the scFv fusion pair specifically interacted with the line epitopes of the protease resistant core region bPrP27‐30. Surface plasmon resonance (SPR) sensorgrams revealed that the equilibrium dissociation constants of the interactions with rb‐PrPc were 3.24×10?8 M, 8.82×10?8M, and 8.10×10?9 M for Z186‐L‐SBP, Z163, and Z163‐Fc, respectively. All binding reactions followed rapid association and slow dissociation kinetics. As a detection pair, Z186‐L‐SBP functioned as a capture probe and was immobilized on the streptavidin coated slides to form reactive layer of the antibody chip, and Z163‐Fc labeled with fluorescence dye Cy3 functioned as a detection probe generating fluorescence signal. The antibody chip could detect existence of rb‐PrPc with detection limit of 1 pg/ml.  相似文献   

2.
Prion proteins that have transformed from their normal cellular counterparts (PrPc) into infectious form (PrPres) are responsible for causing progressive neurodegenerative diseases in numerous species, such as bovine spongiform encephalopathy (BSE) in cattle (also known as mad cow disease), scrapie in sheep, and Creutzfeldt-Jakob disease (CJD) in humans. Due to a possible link between BSE and CJD it is highly desirable to develop non-invasive and ante mortem tests for the detection of prion proteins in bovine samples. Such ante mortem tests of all cows prior to slaughter will help to prevent the introduction of PrPres into the human food supply. Furthermore, detection of PrPres in donated blood will also help to prevent the transmission of CJD among humans through blood transfusion. In this study, we have continued development of a micromechanical resonator array that is capable of detecting PrPc in bovine blood serum. The sensitivity of the resonators for the detection of PrPc is further enhanced by the use of secondary mass labels. A pair of antibodies is used in a sandwich immunoassay format to immobilize PrPc on the surface of resonators and attach nanoparticles as secondary mass labels to PrPc. Secondary mass labeling is optimized in terms of incubation time to maximize the frequency shifts that correspond to the presence of PrPc on the surface of resonators. Our results show that a minimum of 200 pg mL−1 of PrPc in blood serum can be detected using micromechanical resonator arrays.  相似文献   

3.
Prion diseases are currently in the spotlight. Among them, the Creutzfeldt–Jakob disease in humans, scrapie in sheep, and bovine spongiform encephalopathy, or mad cow disease, are most commonly known. The term “spongiform” refers to the characteristic appearance of the lesions found in affected brains. It is likely that prion diseases originate from a causative agent that replicates independently of nucleic acids. Current research assumes that a structural isoform of prion protein, the scrapie form PrPSc, is the responsible pathogen. The three-dimensional structure, but not the amino acid sequence of the isoform differs from that of the normal cellular isoform, PrPc. According to a widely accepted hypothesis, the normal isoform of the protein is converted by an autocatalytic process into the scrapie form upon contact with the latter. This hypothesis has not yet been proven. However, considerable progress has been made in the last few years, which might provide answers to many open questions about prion diseases, the subject of this review.  相似文献   

4.
In this work cellular bovine prion protein (PrPc) was incorporated in supported lipid membranes and its lateral diffusion was studied by single-dye tracking (SDT) and a complementary ensemble method, fluorescence recovery after photobleaching (FRAP). PrPc was purified from calf brain with its native glycosylphosphatidylinositol (GPI) anchor and reconstituted into DMPC lipid vesicles. Homogeneous spreading on solid supports over macroscopic areas was confirmed with fluorescence microscopy. FRAP results demonstrated very high mobile fractions of up to 94%, confirming that most of the GPI-anchored PrPc are freely diffusive in the fluid supported membrane matrix. Moreover, the lateral diffusivity of PrPc significantly depends on the pH of the buffer, suggesting that the conformation of PrPc and thus the frictional drag exerted to the protein molecule (and thus the effective hydrodynamic radius) is influenced by the effective net charge. To complement the ensemble results obtained by FRAP, the statistical variation of lateral diffusion coefficients of individual PrPc molecules in the supported membranes were measured with SDT. Simulation-based statistical analysis indicated that in addition to the expected statistical scatter there is a significant spread of diffusion coefficients, while the average of the diffusion coefficients of individual proteins obtained by SDT is in excellent agreement with those measured by ensemble FRAP. In further experiments, PrPc was laterally concentrated in the membrane by the application of tangential electric fields (membrane electrophoresis). However, the equilibrium concentration profile reached after 20 min was different from an exponential gradient. This finding suggests that PrPc purified from bovine brain possesses non-uniform net charges. As the lateral diffusion coefficient of proteins in two-dimensional lipid membranes sensitively depends upon the frictional drag, the combination of SDT, ensemble FRAP, and membrane electrophoresis can be used as a powerful tool to gain insights into protein–protein binding and oligomer formation that would play a crucial role in infectious protein transmitted diseases such as BSE.  相似文献   

5.

Background  

Molecular mechanisms underlying prion agent replication, converting host-encoded cellular prion protein (PrPC) into the scrapie associated isoform (PrPSc), are poorly understood. Selective self-interaction between PrP molecules forms a basis underlying the observed differences of the PrPC into PrPSc conversion process (agent replication). The importance of previously peptide-scanning mapped ovine PrP self-interaction domains on this conversion was investigated by studying the ability of six of these ovine PrP based peptides to modulate two processes; PrP self-interaction and conversion.  相似文献   

6.
Copper is an essential nutrient for the normal development of the brain and nervous system, although the hallmark of several neurological diseases is a change in copper concentrations in the brain and central nervous system. Prion protein (PrP) is a copper‐binding, cell‐surface glycoprotein that exists in two alternatively folded conformations: a normal isoform (PrPC) and a disease‐associated isoform (PrPSc). Prion diseases are a group of lethal neurodegenerative disorders that develop as a result of conformational conversion of PrPC into PrPSc. The pathogenic mechanism that triggers this conformational transformation with the subsequent development of prion diseases remains unclear. It has, however, been shown repeatedly that copper plays a significant functional role in the conformational conversion of prion proteins. In this review, we focus on current research that seeks to clarify the conformational changes associated with prion diseases and the role of copper in this mechanism, with emphasis on the latest applications of NMR and EPR spectroscopy to probe the interactions of copper with prion proteins. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.

Background  

The common event in transmissible spongiform encephalopathies (TSEs) or prion diseases is the conversion of host-encoded protease sensitive cellular prion protein (PrPC) into strain dependent isoforms of scrapie associated protease resistant isoform (PrPSc) of prion protein (PrP). These processes are determined by similarities as well as strain dependent variations in the PrP structure. Selective self-interaction between PrP molecules is the most probable basis for initiation of these processes, potentially influenced by chaperone molecules, however the mechanisms behind these processes are far from understood. We previously determined that polymorphisms do not affect initial PrPC to PrPSc binding but rather modulate a subsequent step in the conversion process. Determining possible sites of self-interaction could elucidate which amino acid(s) or amino acid sequences contribute to binding and further conversion into other isoforms. To this end, ovine – and bovine PrP peptide-arrays consisting of 15-mer overlapping peptides were probed with recombinant sheep PrPC fused to maltose binding protein (MBP-PrP).  相似文献   

8.
Prion disorders, or transmissible spongiform encephalophaties (TSE), are fatal neurodegenerative diseases affecting mammals. Prion-infectious particles comprise of misfolded pathological prion proteins (PrPTSE). Different TSEs are associated with distinct PrPTSE folds called prion strains. The high resistance of prions to conventional sterilization increases the risk of prion transmission in medical, veterinary and food industry practices. Recently, we have demonstrated the ability of disulfonated hydroxyaluminum phthalocyanine to photodynamically inactivate mouse RML prions by generated singlet oxygen. Herein, we studied the efficiency of three phthalocyanine derivatives in photodynamic treatment of seven mouse adapted prion strains originating from sheep, human, and cow species. We report the different susceptibilities of the strains to photodynamic oxidative elimination of PrPTSE epitopes: RML, A139, Fu-1 > mBSE, mvCJD > ME7, 22L. The efficiency of the phthalocyanine derivatives in the epitope elimination also differed (AlPcOH(SO3)2 > ZnPc(SO3)1-3 > SiPc(OH)2(SO3)1-3) and was not correlated to the yields of generated singlet oxygen. Our data suggest that the structural properties of both the phthalocyanine and the PrPTSE strain may affect the effectiveness of the photodynamic prion inactivation. Our finding provides a new option for the discrimination of prion strains and highlights the necessity of utilizing range of prion strains when validating the photodynamic prion decontamination procedures.  相似文献   

9.
《Chemistry & biology》1997,4(5):345-355
Background: Peptides derived from three of four putative α-helical regions of the prion protein (PrP) form amyloid in solution. These peptides serve as models for amyloidogenesis and for understanding the α helix → β strand conformational change that is responsible for the development of disease. Kinetic studies of amyloid formation usually rely on the detection of fibrils. No study has yet explored the rate of monomer peptide uptake or the presence of nonfibrillar intermediate species. We present a new electron spin resonance (ESR) method for probing the kinetics of amyloid formation. A spin label was covalently attached to a highly amyloidogenic peptide and kinetic trials were monitored by ESR.Results: Electron microscopy shows that the spin-labeled peptide forms amyloid, and ESR reveals the kinetic decay of free peptide monomer during amyloid formation. The combination of electron microscopy and ESR suggests that there are three kinetically relevant species: monomer peptide, amyloid and amorphous aggregate (peptide aggregates devoid of fibrils or other structures with long-range order). A rather surprising result is that amyloid formation requires the presence of this amorphous aggregate. This is particularly interesting because PrPSc the form of PrP associated with scrapie, is often found as an aggregate and amyloid formation is not a necessary component of prion replication or pathogenesis.Conclusions: Kinetic analysis of the time-dependent data suggests a model whereby the amorphous aggregate has a previously unsuspected dual role: it releases monomer into solution and also provides initiation sites for fibril growth. These findings suggest that the β-sheet-rich PrPSc may be stabilized by aggregation.  相似文献   

10.
Prion diseases are a group of neurodegenerative diseases based on the conformational conversion of the normal form of the prion protein (PrPC) to the disease‐related scrapie isoform (PrPSc). Copper(II) coordination to PrPC has attracted considerable interest for almost 20 years, mainly due to the possibility that such an interaction would be an important event for the physiological function of PrPC. In this work, we report the copper(II) coordination features of the peptide fragment Ac(PEG11)3PrP(60‐114) [Ac=acetyl] as a model for the whole N‐terminus of the PrPC metal‐binding domain. We studied the complexation properties of the peptide by means of potentiometric, UV/Vis, circular dichroism and electrospray ionisation mass spectrometry techniques. The results revealed that the preferred histidyl binding sites largely depend on the pH and copper(II)/peptide ratio. Formation of macrochelate species occurs up to a 2:1 metal/peptide ratio in the physiological pH range and simultaneously involves the histidyl residues present both inside and outside the octarepeat domain. However, at increased copper(II)/peptide ratios amide‐bound species form, especially within the octarepeat domain. On the contrary, at basic pH the amide‐bound species predominate at any copper/peptide ratio and are formed preferably with the binding sites of His96 and His111, which is similar to the metal‐binding‐affinity order observed in our previous studies.  相似文献   

11.
New forms of transmissible spongiform encephalopathy (TSE) continue to be identified, and consequently sensitive differential diagnosis is increasingly important both for the management of disease in humans and livestock and in providing confidence in the safety of the food chain. TSE diseases are associated with accumulation of protease‐resistant prion protein (PrPSc) and detection of this marker protein is central to diagnosis. Proteolysis by proteinase K (PK) generates protease‐resistant products (PrPres) with partially variable N‐termini. The conformation(s) of PrPSc and thus the points of PK cleavage are thought to be dependent on the strain of prion disease. Western blot (WB) analysis of PrPres gives characteristic migration patterns that can be used to diagnose TSEs, but the relatively low resolution of this technique limits its ability to differentiate certain disease strains. Mass spectrometry (MS) has the capability to resolve these various PK cleavage sites to the level of individual amino acid residues. In the present study multiple selected reaction monitoring (mSRM) was used to detect and quantify PrPres N‐terminal tryptic peptides by MS and thus to define the N‐terminal amino acid profiles (N‐TAAPs) of PrPres characteristic for various TSEs in sheep. The fragmentation behaviour of the N‐terminal tryptic peptides was studied to allow selection of the transitions specific for each peptide. Different PrPres preparation methods were evaluated and the most effective approach applied to differentiate the N‐TAAPs corresponding to various sheep TSE isolates. Marked differences were identified between the N‐TAAPs of bovine spongiform encephalopathy (BSE) and classical scrapie, and between classical scrapie and the experimental strains SSBP/1 and CH1641, thereby validating this approach as a means of TSE‐strain specific diagnosis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Prion diseases, including ovine scrapie, bovine spongiform encephalopathy (BSE), human kuru and Creutzfeldt–Jakob disease (CJD), originate from a conformational change of the normal cellular prion protein (PrPC) into abnormal protease-resistant prion protein (PrPSc). There is concern regarding these prion diseases because of the possibility of their zoonotic infections across species. Mutations and polymorphisms of prion sequences may influence prion-disease susceptibility through the modified expression and conformation of proteins. Rapid determination of susceptibility based on prion-sequence polymorphism information without complex structural and molecular biological analyses may be possible. Information regarding the effects of mutations and polymorphisms on prion-disease susceptibility was collected based on previous studies to classify the susceptibilities of sequences, whereas the BLOSUM62 scoring matrix and the position-specific scoring matrix were utilised to determine the distance of target sequences. The k-nearest neighbour analysis was validated with cross-validation methods. The results indicated that the number of polymorphisms did not influence prion-disease susceptibility, and three and four k-objects showed the best accuracy in identifying the susceptible group. Although sequences with negative polymorphisms showed relatively high accuracy for determination, polymorphisms may still not be an appropriate factor for estimating variation in susceptibility. Discriminant analysis of prion sequences with scoring matrices was attempted as a possible means of determining susceptibility to prion diseases. Further research is required to improve the utility of this method.  相似文献   

13.
Prion diseases are fatal neurodegenerative diseases that can cause severe dementia.The misfolding and accumulation of the prion peptide (Pr P)106–126is crucial,and this process is closely relevant to biological membranes.However,how Pr P106–126aggregation is affected by the molecular chirality of phospholipid membrane is unknown.Thus,in this study,a pair of L-and D-aspartic acid (Asp)-modified 1,2-dipalmitoyl-sn–glycero-3-phosphoethanolamine (DPPE) were synthesized to const...  相似文献   

14.
Understanding the structural basis that distinguishes the amyloid form of the prion protein from its monomeric homologue is of crucial importance to elucidate the mechanism of the lethal diseases related to this protein. Recently, an in vitro conversion system was established which reproduces the transition of recombinant prion protein PrP(23–230) from its native α‐helical rich form into an aggregated amyloid β‐sheet rich form with physicochemical properties reminiscent to those of the disease‐related isoform of the prion protein, PrPSc. To study the tertiary and quaternary structural organization within recombinant amyloid fibrils from mouse, mPrP(23–231)βf; bovine, bPrP(23–230)βf; and elk, ePrP(23–230)βf; we utilized hydrogen/deuterium (H/D) exchange analyzed by matrix‐assisted laser desorption/ionization (MALDI) and nano‐electrospray (nano‐ESI) mass spectrometry. No significant differences were found by measuring the deuterium exchange kinetics of the aggregated fibrillar forms for mPrP(23–231)βf, bPrP(23–230)βf and ePrP(23–230)βf, indicating a similar overall structural organization of the fibrils from all three species. Next, we characterized the solvent accessibility for the soluble and fibrillar forms of the mouse prion protein by hydrogen exchange, pepsin proteolysis and nano‐ESI ion trap mass spectrometry analysis. In its amyloid form, two highly protected regions of mPrP(23–231) comprising residues [24–98] and [182–212] were identified. The residues between the two highly protected stretches were found to be more solvent exposed, but less than in the soluble protein, and might therefore rather form part of a fibrillar interface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The prion protein (PrP) is implicitly involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs). The conversion of normal cellular PrP (PrPC), a protein that is predominantly α-helical, to a β-sheet-rich isoform (PrPSc), which has a propensity to aggregate, is the key molecular event in prion diseases. During its short life span, PrP can experience two different pH environments; a mildly acidic environment, whilst cycling within the cell, and a neutral pH when it is glycosyl phosphatidylinositol (GPI)-anchored to the cell membrane. Ion mobility (IM) combined with mass spectrometry has been employed to differentiate between two conformational isoforms of recombinant Syrian hamster prion protein (SHaPrP). The recombinant proteins studied were α-helical SHaPrP(90-231) and β-sheet-rich SHaPrP(90-231) at pH 5.5 and pH 7.0. The recombinant proteins have the same nominal mass-to-charge ratio (m/z) but differ in their secondary and tertiary structures. A comparison of traveling-wave (T-Wave) ion mobility and drift cell ion mobility (DCIM) mass spectrometry estimated and absolute cross-sections showed an excellent agreement between the two techniques. The use of T-Wave ion mobility as a shape-selective separation technique enabled differentiation between the estimated cross-sections and arrival time distributions (ATDs) of α-helical SHaPrP(90-231) and β-sheet-rich SHaPrP(90-231) at pH 5.5. No differences in cross-section or ATD profiles were observed between the protein isoforms at pH 7.0. The findings have potential implications for a new ante-mortem screening assay, in bodily fluids, for prion misfolding diseases such as TSEs.  相似文献   

16.
Prion diseases are incurable neurodegenerative diseases that affect both humans and animals. The infectious agent is a pathogenic form of the prion protein that accumulates in brain as amyloids. Currently, there is neither cure nor reliable preclinical diagnostics on the market available. The growing number of reports shows that passive immunisation is one of the most promising strategies for prion disease therapy, where antibodies against prions may prevent and even cure the infection. Since antibodies are large molecules and, thus, might not be suitable for the therapy, different antibody fragments are a good alternative. Therefore, we have designed and prepared single-chain antibody fragments (scFvs) derived from the PrPSc-specific murine monoclonal antibody V5B2. Using a new expression vector pMD204, we produced scFvs in two opposing chain orientations in the periplasm of Escherichia coli. Both recombinant antibody fragments retained the specificity of the parent antibody and one of these exhibited binding properties comparable to the corresponding murine Fab fragments with the affinity in nM range. Our monovalent antibody fragments are of special interest in view of possible therapeutic reagents for prion diseases as well as for development of a new generation of diagnostics.  相似文献   

17.
Delivery of therapeutic proteins into tissues and across the blood–brain barrier (BBB) is limited by the size and biochemical properties of the proteins. Efficient delivery across BBB is generally restricted to small, highly lipophilic molecules. However, in the last decades, several peptides that can pass cell membranes have been identified. It has been shown that these peptides are also capable of delivering large hydrophilic cargoes into cells and are therefore a powerful biological tool for transporting drugs across cell membranes and even into the brain. We designed and prepared a single-chain antibody fragment (scFvs), specific for the pathological form of the prion protein (PrPSc), where a cell-penetrating peptide (CPP) was used as a linker between the two variable domains of the scFv. The intravenously administered recombinant scFv-CPP was successfully targeted to and delivered into mouse brain cells. Our single-chain antibody fragments are of special interest in view of possible therapeutic reagents design not only for prion diseases but also for other neurodegenerative diseases.  相似文献   

18.
Bacteriochlorophyll c (BChl c) solid films were prepared from a carbon tetrachloride solution on CaF2 plates as artificial aggregates. Effects of organic vapor such as acetone and tetrahydrofuran (THF) on the BChl c films were studied by absorption and Fourier-transform infrared spectroscopy. Two major homologs (R[E,E]BChl cF and R[P,E]BChl cF) and one minor homolog (S[I,E]BChl c) isolated from the green photosynthetic bacterium Chlorobium limicola strain 6230 were examined for the experiments. The BChl c polymeric aggregates absorbing at739–753 nm similar to those in the chlorosome were induced for all homologs upon the treatment of BChl c solid film with acetone vapor. The 131-keto C=O stretching band in the R[E,E]BChl cF solid film showed a downward shift from 1651 cm?1to 1643 cm?1 with a concomitant shift of the 31-OH stretching bands from 3337 and 3238 cm?1 to 3163 cm?1. It was suggested that the lower aggregates brought about by Mg…O=C(131) and (31)O…O=C(131) bonds were transformed into the higher aggregates strongly hydrogen-bonded in a Mg…(31)O-H…O=C(13l) interaction. They were transformed to a monomer-like form absorbing at 667 nm upon exposure to THF vapor and were reversibly converted to the higher aggregates upon removal of THF molecules in vacuo.  相似文献   

19.
The doppel protein (Dpl) is the first homologue of the prion protein (PrPC) to be discovered; it is overexpressed in transgenic mice that lack the prion gene, resulting in neurotoxicity. The whole prion protein is able to inhibit Dpl neurotoxicity, and its N‐terminal domain is the determinant part of the protein function. This region represents the main copper(II) binding site of PrPC. Dpl is able to bind at least one copper ion, and the specific metal‐binding site has been identified as the histidine residue at the beginning of the third helical region. However, a reliable characterization of copper(II) coordination features has not been reported. In a previous paper, we studied the copper(II) interaction with a peptide that encompasses only the loop region potentially involved in metal binding. Nevertheless, we did not find a complete match between the EPR spectroscopic parameters of the copper(II) complexes formed with the synthesized peptide and those reported for the copper(II) binding sites of the whole protein. Herein, the synthesis of the human Dpl peptide fragment hDpl(122–139) (Ac‐KPDNKLHQQVLWRLVQEL‐NH2) and its copper(II) complex species are reported. This peptide encompasses the third α helix and part of the loop linking the second and the third helix of human doppel protein. The single‐point‐mutated peptide, hDpl(122–139)D124N, in which aspartate 124 replaces an asparagine residue, was also synthesized. This peptide was used to highlight the role of the carboxylate group on both the conformation preference of the Dpl fragment and its copper(II) coordination features. NMR spectroscopic measurements show that the hDpl(122–139) peptide fragment is in the prevailing α‐helix conformation. It is localized within the 127–137 amino acid residue region that represents a reliable conformational mimic of the related protein domain. A comparison with the single‐point‐mutated hDpl(122–139)D124N reveals the significant role played by the aspartic residue in addressing the peptide conformation towards a helical structure. It is further confirmed by CD measurements. Potentiometric titrations were carried out in aqueous solutions to obtain the stability constant values of the species formed by copper(II) with the hDpl peptides. Spectroscopic studies (EPR, NMR, CD, UV/Vis) were performed to characterize the coordination environments of the different metal complexes. The EPR parameters of the copper(II) complexes with hDpl(122–139) match those of the previously reported copper(II) binding sites of the whole hDpl. Addition of the copper(II) ion to the peptide fragment does not alter the helical conformation of hDpl(122–139), as shown by CD spectra in the far‐UV region. The aspartate‐driven preorganized secondary structure is not significantly modified by the involvement of Asp124 in the copper(II) complex species that form in the physiological pH range. To elaborate on the potential role of copper(II) in the recently reported interaction between the PrPC and Dpl, the affinity of the copper(II) complexes towards the prion N terminus domain and the binding site of Dpl was reported.  相似文献   

20.
Sai Jin Xiao  Yuan Fang Li  Tao Huang 《Talanta》2009,79(5):1283-3138
An aptamer-participated haprin structure was designed by employing cellular prion protein (PrPC) as a model protein, and thus an aptamer-mediated turn-on fluorescence assay for proteins was developed in this contribution. The designed aptamer-participated haprin structure consists of three segments. Namely, an aptamer sequence located in the loop, three guanine bases at 3′-terminal, and a fluophor modified at 5′-terminal. It was found that the guanine bases at the 3′-terminal could quench the fluorescence of the fluophor such as tetramethyl-6-carboxyrhodamine (TAMRA) at the 5′-terminal about 76.6% via electron transfer if the guanine bases are close enough to the fluophor, and the quenched fluorescence could get restored when the target protein is present since the interaction, which could be confirmed by measuring fluorescence lifetime, between TAMRA-aptamer and the target protein forces the guanines away from TAMRA so that TAMRA-modified aptamer changes into turn-on state. A linear relationship was then constructed between the turn-on fluorescence intensity and the concentration of PrPC in the range from 1.1 to 44.7 μg/mL with a limit of detection of 0.3 μg/mL (3σ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号