首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Based on plasma kinetic theory, the dispersion and Landau damping of Langmuir and ion-acoustic waves carrying finite orbital angular momentum (OAM) were investigated in the κ-deformed Kaniadakis distributed plasma system. The results showed that the peculiarities of the investigated subjects relied on the deformation parameter κ and OAM parameter η. For both Langmuir and ion-acoustic waves, dispersion was enhanced with increased κ, while the Landau damping was suppressed. Conversely, both the dispersion and Landau damping were depressed by OAM. Moreover, the results coincided with the straight propagating plane waves in a Maxwellian plasma system when κ=0 and η. It was expected that the present results would give more insight into the trapping and transportation of plasma particles and energy.  相似文献   

3.
Let Tϵ, 0ϵ1/2, be the noise operator acting on functions on the boolean cube {0,1}n. Let f be a distribution on {0,1}n and let q>1. We prove tight Mrs. Gerber-type results for the second Rényi entropy of Tϵf which take into account the value of the qth Rényi entropy of f. For a general function f on {0,1}n we prove tight hypercontractive inequalities for the 2 norm of Tϵf which take into account the ratio between q and 1 norms of f.  相似文献   

4.
We report an analysis of the distribution of lengths of plant DNA (exons). Three species of Cucurbitaceae were investigated. In our study, we used two distinct κ distribution functions, namely, κ-Maxwellian and double-κ, to fit the length distributions. To determine which distribution has the best fitting, we made a Bayesian analysis of the models. Furthermore, we filtered the data, removing outliers, through a box plot analysis. Our findings show that the sum of κ-exponentials is the most appropriate to adjust the distribution curves and that the values of the κ parameter do not undergo considerable changes after filtering. Furthermore, for the analyzed species, there is a tendency for the κ parameter to lay within the interval (0.27;0.43).  相似文献   

5.
The parameters revealing the collective behavior of hadronic matter extracted from the transverse momentum spectra of π+, π, K+, K, p, p¯, Ks0, Λ, Λ¯, Ξ or Ξ, Ξ¯+ and Ω or Ω¯+ or Ω+Ω¯ produced in the most central and most peripheral gold–gold (AuAu), copper–copper (CuCu) and lead–lead (PbPb) collisions at 62.4 GeV, 200 GeV and 2760 GeV, respectively, are reported. In addition to studying the nucleus–nucleus (AA) collisions, we analyzed the particles mentioned above produced in pp collisions at the same center of mass energies (62.4 GeV, 200 GeV and 2760 GeV) to compare with the most peripheral AA collisions. We used the Tsallis–Pareto type function to extract the effective temperature from the transverse momentum spectra of the particles. The effective temperature is slightly larger in a central collision than in a peripheral collision and is mass-dependent. The mean transverse momentum and the multiplicity parameter (N0) are extracted and have the same result as the effective temperature. All three extracted parameters in pp collisions are closer to the peripheral AA collisions at the same center of mass energy, revealing that the extracted parameters have the same thermodynamic nature. Furthermore, we report that the mean transverse momentum in the PbPb collision is larger than that of the AuAu and CuCu collisions. At the same time, the latter two are nearly equal, which shows their comparatively strong dependence on energy and weak dependence on the size of the system. The multiplicity parameter, N0 in central AA, depends on the interacting system’s size and is larger for the bigger system.  相似文献   

6.
We use Magnetospheric Multiscale (MMS) data to study electron kinetic entropy per particle Se across Earth’s quasi-perpendicular bow shock. We have selected 22 shock crossings covering a wide range of shock conditions. Measured distribution functions are calibrated and corrected for spacecraft potential, secondary electron contamination, lack of measurements at the lowest energies and electron density measurements based on plasma frequency measurements. All crossings display an increase in electron kinetic entropy across the shock ΔSe being positive or zero within their error margin. There is a strong dependence of ΔSe on the change in electron temperature, ΔTe, and the upstream electron plasma beta, βe. Shocks with large ΔTe have large ΔSe. Shocks with smaller βe are associated with larger ΔSe. We use the values of ΔSe, ΔTe and density change Δne to determine the effective adiabatic index of electrons for each shock crossing. The average effective adiabatic index is γe=1.64±0.07.  相似文献   

7.
This study deals with drift parameters estimation problems in the sub-fractional Vasicek process given by dxt=θ(μxt)dt+dStH, with θ>0, μR being unknown and t0; here, SH represents a sub-fractional Brownian motion (sfBm). We introduce new estimators θ^ for θ and μ^ for μ based on discrete time observations and use techniques from Nordin–Peccati analysis. For the proposed estimators θ^ and μ^, strong consistency and the asymptotic normality were established by employing the properties of SH. Moreover, we provide numerical simulations for sfBm and related Vasicek-type process with different values of the Hurst index H.  相似文献   

8.
In this work, first, we consider novel parameterized identities for the left and right part of the (p,q)-analogue of Hermite–Hadamard inequality. Second, using these new parameterized identities, we give new parameterized (p,q)-trapezoid and parameterized (p,q)-midpoint type integral inequalities via η-quasiconvex function. By changing values of parameter μ[0,1], some new special cases from the main results are obtained and some known results are recaptured as well. Finally, at the end, an application to special means is given as well. This new research has the potential to establish new boundaries in comparative literature and some well-known implications. From an application perspective, the proposed research on the η-quasiconvex function has interesting results that illustrate the applicability and superiority of the results obtained.  相似文献   

9.
This paper combines the mechanical efficiency theory and finite time thermodynamic theory to perform optimization on an irreversible Stirling heat-engine cycle, in which heat transfer between working fluid and heat reservoir obeys linear phenomenological heat-transfer law. There are mechanical losses, as well as heat leakage, thermal resistance, and regeneration loss. We treated temperature ratio x of working fluid and volume compression ratio λ as optimization variables, and used the NSGA-II algorithm to carry out multi-objective optimization on four optimization objectives, namely, dimensionless shaft power output P¯s, braking thermal efficiency ηs, dimensionless efficient power E¯p and dimensionless power density P¯d. The optimal solutions of four-, three-, two-, and single-objective optimizations are reached by selecting the minimum deviation indexes D with the three decision-making strategies, namely, TOPSIS, LINMAP, and Shannon Entropy. The optimization results show that the D reached by TOPSIS and LINMAP strategies are both 0.1683 and better than the Shannon Entropy strategy for four-objective optimization, while the Ds reached for single-objective optimizations at maximum P¯s, ηs, E¯p, and P¯d conditions are 0.1978, 0.8624, 0.3319, and 0.3032, which are all bigger than 0.1683. This indicates that multi-objective optimization results are better when choosing appropriate decision-making strategies.  相似文献   

10.
The aim of this paper is to show that α-limit sets in Lorenz maps do not have to be completely invariant. This highlights unexpected dynamical behavior in these maps, showing gaps existing in the literature. Similar result is obtained for unimodal maps on [0,1]. On the basis of provided examples, we also present how the performed study on the structure of α-limit sets is closely connected with the calculation of the topological entropy.  相似文献   

11.
Based on Kedem–Katchalsky formalism, the model equation of the membrane potential (Δψs) generated in a membrane system was derived for the conditions of concentration polarization. In this system, a horizontally oriented electro-neutral biomembrane separates solutions of the same electrolytes at different concentrations. The consequence of concentration polarization is the creation, on both sides of the membrane, of concentration boundary layers. The basic equation of this model includes the unknown ratio of solution concentrations (Ci/Ce) at the membrane/concentration boundary layers. We present the calculation procedure (Ci/Ce) based on novel equations derived in the paper containing the transport parameters of the membrane (Lp, σ, and ω), solutions (ρ, ν), concentration boundary layer thicknesses (δl, δh), concentration Raileigh number (RC), concentration polarization factor (ζs), volume flux (Jv), mechanical pressure difference (ΔP), and ratio of known solution concentrations (Ch/Cl). From the resulting equation, Δψs was calculated for various combinations of the solution concentration ratio (Ch/Cl), the Rayleigh concentration number (RC), the concentration polarization coefficient (ζs), and the hydrostatic pressure difference (ΔP). Calculations were performed for a case where an aqueous NaCl solution with a fixed concentration of 1 mol m−3 (Cl) was on one side of the membrane and on the other side an aqueous NaCl solution with a concentration between 1 and 15 mol m−3 (Ch). It is shown that (Δψs) depends on the value of one of the factors (i.e., ΔP, Ch/Cl, RC and ζs) at a fixed value of the other three.  相似文献   

12.
This paper systematically presents the λ-deformation as the canonical framework of deformation to the dually flat (Hessian) geometry, which has been well established in information geometry. We show that, based on deforming the Legendre duality, all objects in the Hessian case have their correspondence in the λ-deformed case: λ-convexity, λ-conjugation, λ-biorthogonality, λ-logarithmic divergence, λ-exponential and λ-mixture families, etc. In particular, λ-deformation unifies Tsallis and Rényi deformations by relating them to two manifestations of an identical λ-exponential family, under subtractive or divisive probability normalization, respectively. Unlike the different Hessian geometries of the exponential and mixture families, the λ-exponential family, in turn, coincides with the λ-mixture family after a change of random variables. The resulting statistical manifolds, while still carrying a dualistic structure, replace the Hessian metric and a pair of dually flat conjugate affine connections with a conformal Hessian metric and a pair of projectively flat connections carrying constant (nonzero) curvature. Thus, λ-deformation is a canonical framework in generalizing the well-known dually flat Hessian structure of information geometry.  相似文献   

13.
There is no generally accepted definition for conditional Tsallis entropy. The standard definition of (unconditional) Tsallis entropy depends on a parameter α that converges to the Shannon entropy as α approaches 1. In this paper, we describe three proposed definitions of conditional Tsallis entropy suggested in the literature—their properties are studied and their values, as a function of α, are compared. We also consider another natural proposal for conditional Tsallis entropy and compare it with the existing ones. Lastly, we present an online tool to compute the four conditional Tsallis entropies, given the probability distributions and the value of the parameter α.  相似文献   

14.
15.
In this work, a finite element (FE) method is discussed for the 3D steady Navier–Stokes equations by using the finite element pair Xh×Mh. The method consists of transmitting the finite element solution (uh,ph) of the 3D steady Navier–Stokes equations into the finite element solution pairs (uhn,phn) based on the finite element space pair Xh×Mh of the 3D steady linearized Navier–Stokes equations by using the Stokes, Newton and Oseen iterative methods, where the finite element space pair Xh×Mh satisfies the discrete inf-sup condition in a 3D domain Ω. Here, we present the weak formulations of the FE method for solving the 3D steady Stokes, Newton and Oseen iterative equations, provide the existence and uniqueness of the FE solution (uhn,phn) of the 3D steady Stokes, Newton and Oseen iterative equations, and deduce the convergence with respect to (σ,h) of the FE solution (uhn,phn) to the exact solution (u,p) of the 3D steady Navier–Stokes equations in the H1L2 norm. Finally, we also give the convergence order with respect to (σ,h) of the FE velocity uhn to the exact velocity u of the 3D steady Navier–Stokes equations in the L2 norm.  相似文献   

16.
According to the established model of a single resonance energy selective electron refrigerator with heat leakage in the previous literature, this paper performs multi-objective optimization with finite-time thermodynamic theory and NSGA-II algorithm. Cooling load (R¯), coefficient of performance (ε), ecological function (ECO¯), and figure of merit (χ¯) of the ESER are taken as objective functions. Energy boundary (E/kB) and resonance width (ΔE/kB) are regarded as optimization variables and their optimal intervals are obtained. The optimal solutions of quadru-, tri-, bi-, and single-objective optimizations are obtained by selecting the minimum deviation indices with three approaches of TOPSIS, LINMAP, and Shannon Entropy; the smaller the value of deviation index, the better the result. The results show that values of E/kB and ΔE/kB are closely related to the values of the four optimization objectives; selecting the appropriate values of the system can design the system for optimal performance. The deviation indices are 0.0812 with LINMAP and TOPSIS approaches for four-objective optimization (ECO¯R¯εχ¯), while the deviation indices are 0.1085, 0.8455, 0.1865, and 0.1780 for four single-objective optimizations of maximum ECO¯, R¯, ε, and χ¯, respectively. Compared with single-objective optimization, four-objective optimization can better take different optimization objectives into account by choosing appropriate decision-making approaches. The optimal values of E/kB and ΔE/kB range mainly from 12 to 13, and 1.5 to 2.5, respectively, for the four-objective optimization.  相似文献   

17.
Many time series entropy calculation methods have been proposed in the last few years. They are mainly used as numerical features for signal classification in any scientific field where data series are involved. We recently proposed a new method, Slope Entropy (SlpEn), based on the relative frequency of differences between consecutive samples of a time series, thresholded using two input parameters, γ and δ. In principle, δ was proposed to account for differences in the vicinity of the 0 region (namely, ties) and, therefore, was usually set at small values such as 0.001. However, there is no study that really quantifies the role of this parameter using this default or other configurations, despite the good SlpEn results so far. The present paper addresses this issue, removing δ from the SlpEn calculation to assess its real influence on classification performance, or optimising its value by means of a grid search in order to find out if other values beyond the 0.001 value provide significant time series classification accuracy gains. Although the inclusion of this parameter does improve classification accuracy according to experimental results, gains of 5% at most probably do not support the additional effort required. Therefore, SlpEn simplification could be seen as a real alternative.  相似文献   

18.
We used the blast wave model with the Boltzmann–Gibbs statistics and analyzed the experimental data measured by the NA61/SHINE Collaboration in inelastic (INEL) proton–proton collisions at different rapidity slices at different center-of-mass energies. The particles used in this study were π+, π, K+, K, and p¯. We extracted the kinetic freeze-out temperature, transverse flow velocity, and kinetic freeze-out volume from the transverse momentum spectra of the particles. We observed that the kinetic freeze-out temperature is rapidity and energy dependent, while the transverse flow velocity does not depend on them. Furthermore, we observed that the kinetic freeze-out volume is energy dependent, but it remains constant with changing the rapidity. We also observed that all three parameters are mass dependent. In addition, with the increase of mass, the kinetic freeze-out temperature increases, and the transverse flow velocity, as well as kinetic freeze-out volume decrease.  相似文献   

19.
Detrended Fluctuation Analysis (DFA) has become a standard method to quantify the correlations and scaling properties of real-world complex time series. For a given scale of observation, DFA provides the function F(), which quantifies the fluctuations of the time series around the local trend, which is substracted (detrended). If the time series exhibits scaling properties, then F()α asymptotically, and the scaling exponent α is typically estimated as the slope of a linear fitting in the logF() vs. log() plot. In this way, α measures the strength of the correlations and characterizes the underlying dynamical system. However, in many cases, and especially in a physiological time series, the scaling behavior is different at short and long scales, resulting in logF() vs. log() plots with two different slopes, α1 at short scales and α2 at large scales of observation. These two exponents are usually associated with the existence of different mechanisms that work at distinct time scales acting on the underlying dynamical system. Here, however, and since the power-law behavior of F() is asymptotic, we question the use of α1 to characterize the correlations at short scales. To this end, we show first that, even for artificial time series with perfect scaling, i.e., with a single exponent α valid for all scales, DFA provides an α1 value that systematically overestimates the true exponent α. In addition, second, when artificial time series with two different scaling exponents at short and large scales are considered, the α1 value provided by DFA not only can severely underestimate or overestimate the true short-scale exponent, but also depends on the value of the large scale exponent. This behavior should prevent the use of α1 to describe the scaling properties at short scales: if DFA is used in two time series with the same scaling behavior at short scales but very different scaling properties at large scales, very different values of α1 will be obtained, although the short scale properties are identical. These artifacts may lead to wrong interpretations when analyzing real-world time series: on the one hand, for time series with truly perfect scaling, the spurious value of α1 could lead to wrongly thinking that there exists some specific mechanism acting only at short time scales in the dynamical system. On the other hand, for time series with true different scaling at short and large scales, the incorrect α1 value would not characterize properly the short scale behavior of the dynamical system.  相似文献   

20.
We study the viable Starobinsky f(R) dark energy model in spatially non-flat FLRW backgrounds, where f(R)=RλRch[1(1+R2/Rch2)1] with Rch and λ representing the characteristic curvature scale and model parameter, respectively. We modify CAMB and CosmoMC packages with the recent observational data to constrain Starobinsky f(R) gravity and the density parameter of curvature ΩK. In particular, we find the model and density parameters to be λ1<0.283 at 68% C.L. and ΩK=0.000990.0042+0.0044 at 95% C.L., respectively. The best χ2 fitting result shows that χf(R)2χΛCDM2, indicating that the viable f(R) gravity model is consistent with ΛCDM when ΩK is set as a free parameter. We also evaluate the values of AIC, BIC and DIC for the best fitting results of f(R) and ΛCDM models in the non-flat universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号