首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular structures, conformational stabilities, and infrared vibrational wavenumbers of 2-thiophenecarboxaldehyde and 3-thiophenecarboxaldehyde are computed using Becke-3–Lee–Yang–Parr (B3LYP) with the 6-311++G** basis set. From the computations, cis-2-thiophenecarboxaldehyde is found to be more stable than the transfer conformer with an energy difference of 1.22 kcal/mol, while trans-3-thiophenecarboxaldehyde is found to be more stable than the cis conformer by 0.89 kcal/mol. The computed dipole moments, structural parameters, relative stabilities of the conformers and infrared vibrational wavenumbers of the two molecules coherently support the experimental data in the literature. The normal vibrational wavenumbers are characterized in terms of the potential energy distribution using the VEDA4 program. The effect of solvents on the conformational stability of the molecules in nine different solvents is investigated using the polarizable continuum model.  相似文献   

2.
The electronic structure of a 2D polyglycine network with a pleated sheet structure has been computed at the Hartree–Fock level and by including electron correlation effects within the second order of many-body perturbation theory (electron polaron model). The influence of the size of the atomic basis set and of the extension of the virtual space has been investigated both for single- and many-particle properties. Comparison with the energy of the corresponding single chains showed that interchain interactions (mainly hydrogen bonding) provide an extra stabilization for the 2D network by 7.4 and 10 kcal/mole per glycine residue at the Hartree–Fock and correlated levels, respectively. The energy dispersions are rather anisotropic for all bands whose widths are about 0.5–1 eV along the polypeptide backbones and 0.1–0.2 eV in the perpendicular direction (hydrogen bonds). The HF value of the fundamental energy gap is reduced by 4 eV to 9.2 eV for electron polarons. The wave functions and interaction integrals obtained can be used to calculate further optical and lattice vibrational properties.  相似文献   

3.
Geometries of 27 generated conformers of levoglucosan were optimized in vacuo at DFT level of theory combining several functionals with high quality basis sets. For the sake of comparison a reference molecular and crystal geometry obtained from 30 K single crystal neutron diffraction data was used. Analysis of the conformers’ geometries revealed that in all stable conformers intramolecular two-or three centre hydrogen bonds were formed. Relative energy of the conformer, which approximated the molecule in the crystal structure the most, was only ∼3 kcal/mol higher, than the energy of the most stable conformer in vacuo. The largest discrepancies between the geometries calculated in vacuo and experimental geometry concentrated in the vicinity of anomeric C1. These differences were reduced by involving O1 to intermolecular hydrogen bond using a simple model of the respective hydrogen bond in the crystal.   相似文献   

4.
The geometries of 35 conformers of Me(SiMe2)nMe (n = 4, 1; n = 5, 2; n = 6, 3; n = 7, 4) were optimized at the MP2/VTDZ level, and CCSD(T) single-point calculations were done at three MP2/VTDZ conformer geometries of 1. The relative ground-state energies of the conformers of 1-4 in the gas phase were obtained from the MP2/VTDZ electronic energy, zero-point vibrational energy, and thermal corrections at 0, 77, and 298 K. Relative energies in an alkane solvent at 77 and 298 K were obtained by the addition of solvation energies, obtained from the SM5.42R model. The calculated energies of 26 of the conformers (n = 4-6) have been least-squares fitted to a set of 15 additive increments associated with each Si-Si bond conformation and each pair of adjacent bond conformations, with mean deviations of 0.06-0.20 kcal/mol. An even better fit for the energies of 24 conformers (mean deviations, 0.01-0.09 kcal/mol) has been obtained with a larger set of 19 increments, which also contained contributions from selected combinations of conformations of three adjacent bonds. The utility of the additive increments for the prediction of relative conformer energies in the gas phase and in solution has been tested on the remaining nine conformers (n = 6, 7). With the improved increment set, the average deviation from the SM5.42R//MP2 results for solvated conformers at 298 K was 0.18 kcal/mol, and the maximum error was 0.98 kcal/mol.  相似文献   

5.
Ab initio Hartree–Fock, Møller–Plesset perturbation theory (MP 2), and quadratic configuration interaction, using single and double substitutions (QCISD ), calculations were carried out for the NF3+ ion. Optimized structures were examined at the various levels of theory. Calculation of the inversion barrier height shows the importance of optimizing the geometry at the post-Hartree–Fock level and the inclusion of polarization functions. The best calculated inversion barrier was 13.3 kcal/mol, compared to an experimental value of 17.3 kcal/mol. The dissociation transition state was computed to determine the well depth of the NF3+ ion and its stability toward dissociation. The computed well depth was 28 and 48 kcal/mol at the SCF and MP 2 levels, respectively. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
Ab initio calculations at the MP2/6‐311++G** level of theory led recently to the identification of 13 stable conformers of gaseous glycine with relative energies within 11 kcal/mol. The stability of every structure depends on subtle intramolecular effects arising from conformational changes. These intramolecular interactions are examined with the tools provided by the Atoms In Molecules (AIM) theory, which allows obtaining a wealth of quantum mechanics information from the molecular electron density ρ( r ). The analysis of the topological features of ρ( r ) on one side and the atomic properties integrated in the basins defined by the gradient vector field of the density on the other side makes possible to explore the different intramolecular effects in every conformer. The existence of intramolecular hydrogen bonds on some conformers is demonstrated, while the presence of other stabilizing interactions arising from favorable conformations is shown to explain the stability of other structures in the potential energy surface of glycine. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 702–716, 2001  相似文献   

7.
Ring and nitrogen inversion account for the conformational equilibria of 3-phenyl-1, 2,3, 4-tetrahydroiso-quinolines. In order to quantitate the relative contribution of each conformer to the equilibrium, we undertook a molecular mechanics study on several substituted 3-phenyl-1, 2, 3, 4-tetrahydroisoquinolines. Predictions from calculations were checked against cmr chemical shift data. No boat conformation contributed significantly to the equilibrium. A general result of our calculations is that in all cases the 3-phenyl group in the equatorial position is strongly favored (by at least 2.50 kcal/mole). For 3-phenyl-1, 2, 3, 4-tetrahydroisoquinolines without substitution at nitrogen, N-H in equatorial position is preferred over the axial conformer, although the energy difference between both is always small (0.30–1.10 kcal/mole). For the cis-1,3-disubstituted compounds the le'3e conformers are the only species present (at least 99.8%). The calculated energy differences between the la′3a conformer and the le′3e conformer are always large (3.80–6.10 kcal/mole for the NHe conformers and 3.60–3.80 kcal/mole for the NHa conformers). The lack of a γ1a upfield shift at C3 also points to the preference for the pseudoequatorial-equatorial conformer. For N-methyl-3-phenyl-1,2,3,4-tetrahydroisoquinoline a preference for the NMe group in the equatorial position is predicted (0.60–2.00 kcal/mole). The small downfield shift at C4 (γNa = 0.5 ppm) is consistent with the equatorial NMe preference. For the cis-1,2,3-trisubstituted compounds no significant γ1a effect at C3 (γ1a = -0.2 and 1.0 ppm) or γNa effect at C4 (γNa = 0.1 and 0.4 ppm) is observed. For these compounds, deformations due to steric congestion are evidenced by the deviation from the values of the C4a-C8a-Cl-N and C4a-C4-C3-N torsional angles, as compared to less crowded 3-phenyl-1,2,3,4-tetrahydroisoquinolines. Here the heterocyclic ring adopts a distorted half-chair conformation.  相似文献   

8.
We determine the proton affinity (PA) and gas-phase basicity (GB) of amino acid α-alanine at a chemically accurate level by performing explicitly-correlated CCSD(T)-F12b/aug-cc-pVDZ geometry optimizations and normal mode vibrational frequency calculations as well as CCSD(T)-F12b/aug-cc-pVTZ energy computations at the possible neutral and protonated geometries. Temperature effects at 298.15 K considering translational, rotational, and vibrational enthalpy and entropy corrections are obtained via standard statistical mechanics utilizing the molecular geometries and the harmonic vibrational energy levels. Both the amino nitrogen (N) and the carbonyl oxygen (O) atoms are proven to be potential protonation sites and a systematic conformational search reveals 3 N- and 9 O-protonated conformers in the 0.00–7.88 and 25.43–30.43 kcal/mol energy ranges at 0 K, respectively. The final computed PA and GB values at (0)298.15 K in case of N-protonation are (214.47)216.80 and 207.07 kcal/mol, respectively, whereas the corresponding values for O-protonation are (189.04)190.63 and 182.31 kcal/mol. The results of the benchmark high-level coupled-cluster computations are utilized to assess the accuracy of several lower-level cost-effective methods such as MP2 and density functional theory with various functionals (SOGGA11-X, M06-2X, PBE0, B3LYP, M06, TPSS).  相似文献   

9.
The acidities, deprotonation energies, of water and methanol were calculated by the use of the ab initio self-consistent-field (SCF ) molecular orbital (MO ) method with electron correlation computed by the thirdorder Møller–Plesset perturbation method and configuration interaction with double excitations. Zero-point vibrational energy correction translational energy change, and the PV work term were included to evaluate the accurate acidities. The calculated acidity difference including these corrections was 7 kcal/mol, which is somewhat smaller than the experimental ones (9.5–12.5 kcal/mol) recently determined. The hydrogen bond energies of the conjugate ions (OH? and CH3O?) with a water molecule were calculated to be 2.3 kcal/mol near the Hartree–Fock limit; this energy only amounts to 25% of the (total) hydration energy difference between the two negative ions. The aqueous solvation effect on the acidity scale was discussed.  相似文献   

10.
Ab initio calculations were performed for some different conformers of 1,2-ethanediol in order to reveal their relative energies. The equilibrium conformation is of gauche type with a comparatively weak intramolecular hydrogen bond. The energy of the all-trans conformer is 3 kcal/mol above the minimum.  相似文献   

11.
We have theoretically investigated the low energy conformers of neutral glycine (NH(2)CH(2)COOH) and its isomer methylcarbamic acid (CH(3)NHCOOH) in the gas phase. A total of 16 different levels of the theory, including CCSD(T), MP2 and B3LYP methods with various Pople and Dunning type basis sets with and without polarization and diffuse functions were used. We found eight low energy glycine conformers, where the heavy atoms in three have a planar backbone, and four low energy methylcarbamic acid conformers all with non-planar backbones. Interestingly at all levels of theory, we found that the most stable methylcarbamic acid conformer is significantly lower in energy than the lowest energy glycine conformer. The MP2 level and single point CCSD(T) calculations show the lowest energy methylcarbamic acid conformer to be between 31 to 37 kJ mol(-1) lower in energy than the lowest energy glycine conformer. These calculations suggest that methylcarbamic acid might serve as a precursor to glycine formation in the Interstellar Medium (ISM). We also report the theoretical harmonic vibrational frequencies, infrared intensities, moment of inertia, rotational constants and dipole moments for all of the conformers. In order to understand how glycine or methylcarbamic acid might be formed in the ISM, larger calculations which model glycine or its isomer interacting with several surrounding molecules, such as water, are needed. We demonstrate that B3LYP method should provide a reliable and computationally practical approach to modeling these larger systems.  相似文献   

12.
Structure and vibrational frequencies of lawsoneoxime and its C3-substituted (R=CH3, NH2, Cl, NO2) derivatives in keto and nitrosophenol forms have been obtained employing the Hartree–Fock and density functional methods. Charge distributions in different conformers have been studied using the molecular electrostatic potential topography as a tool. For all these derivatives except for nitrolawsoneoxime the amphi conformer in the keto form is predicted to be of lowest energy, which can partly be attributed to hydrogen bonding through the oximino nitrogen. In the nitro derivative, however, the preference to form a six membered ring owing to O–H–O hydrogen-bonded interactions makes the anti conformer (keto) the stablest. Further one of the nitrosophenol conformers of nitrolawsoneoxime turns out to be very close in energy (0.21 kJ mol–1 higher) to this anti conformer. The consequences of hydrogen bonding on charge distribution and vibrational spectra are discussed.  相似文献   

13.
Low-frequency, gas-phase vibrational (Raman) spectroscopy was used in conjunction with a jet-cooled technique and ab initio calculations to study the intrinsic thermodynamic properties of the free (gas-phase) amino acid--glycine (Gly, H(2)NCHRCOOH). The first experimental evaluation of the enthalpy differences between the Gly conformations in the vapor phase is presented. The enthalpy values were determined to be 0.33 ± 0.05 and 1.15 ± 0.07 kcal mol(-1) for the ccc and gtt rotamers, respectively; the corresponding relative entropy values were -2.86 ± 0.12 and -0.12 ± 0.16 cal mol(-1) K(-1), respectively. It was proven that the low-frequency Raman and infrared spectroscopy is capable of estimating intrinsic thermodynamic parameters of protein building blocks, such as intermolecular hydrogen bonds (ccc conformer) and rotation around one of the bonds (N-C, gtt conformer). The inaccuracy of the RRHO approximation to Gly conformers was experimentally confirmed. Benchmark data for quantum theory and molecular dynamics were provided.  相似文献   

14.
Accurate geometries, relative energies, rotational and quartic centrifugal distortion constants, dipole moments, harmonic vibrational frequencies, and infrared intensities were determined from ab initio electronic structure calculations for eighteen conformers of the neutral form of the amino acid L-proline. Only four conformers have notable population at low and moderate temperature. The second most stable conformer is only 2+/-2 kJ mol(-1) above the global minimum, while the third and fourth conformers are nearly degenerate and have an excess energy of 7+/-2 kJ mol(-1) relative to the global minimum. All four conformers have one hydrogen bond: N.HO in the lower energy pair of conformers, and NH.O in the higher energy pair of conformers. The conformer pairs differ only in their ring puckering. The relative energies of the conformers include corrections for valence electron correlation, extrapolated to the complete basis set limit, as well as core correlation and relativistic effects. Structural features of the pyrrolidine ring of proline are discussed by using the concept of pseudorotation. The accurate rotational and quartic centrifugal distortion constants as well as the vibrational frequencies and infrared intensities should aid identification and characterization of the conformers of L-proline by rotational and vibrational spectroscopy, respectively. Bonding features of L-proline, especially intramolecular hydrogen bonds, were investigated by the atoms-in-molecules (AIM) technique.  相似文献   

15.
The OPLS all-atom (AA) force field for organic and biomolecular systems has been expanded to include carbohydrates. Starting with reported nonbonded parameters of alcohols, ethers, and diols, torsional parameters were fit to reproduce results from ab initio calculations on the hexopyranoses, α,β-d -glucopyranose, α,β-d -mannopyranose, α,β-d -galactopyranose, methyl α,β-d -glucopyranoside, and methyl α,β-d -mannopyranoside. In all, geometry optimizations were carried out for 144 conformers at the restricted Hartree–Fock (RHF)/6–31G* level. For the conformers with a relative energy within 3 kcal/mol of the global minima, the effects of electron correlation and basis-set extension were considered by performing single-point calculations with density functional theory at the B3LYP/6–311+G** level. The torsional parameters for the OPLS-AA force field were parameterized to reproduce the energies and structures of these 44 conformers. The resultant force field reproduces the ab initio calculated energies with an average unsigned error of 0.41 kcal/mol. The α/β ratios as well as the relative energies between the isomeric hexopyranoses are in good accord with the ab initio results. The predictive abilities of the force field were also tested against RHF/6–31G* results for d -allopyranose with excellent success; a surprising discovery is that the lowest energy conformer of d -allopyranose is a β anomer. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1955–1970, 1997  相似文献   

16.
A series of MP2 and CCSD(T) computations have been carried out with correlation consistent basis sets as large as aug-cc-pV5Z to determine the intrinsic equatorial-axial conformational preference of CH(3)-, F-, OCH(3)-, and OH-substituted cyclohexane and tetrahydropyran rings. The high-accuracy relative electronic energies reported here shed new light on the intrinsic energetics of these cyclic prototypes for the anomeric effect. At the CCSD(T) complete basis set (CBS) limit, the energy of the equatorial conformation relative to the axial position (DeltaE (CBS)(CCSD(T))) is -1.75, -0.20, -0.21, and -0.56 kcal mol(-1) in methyl-, fluoro-, methoxy-, and hydroxycyclohexane, respectively, while DeltaE(CBS)(CCSD(T) is -2.83, +2.45, +1.27, and +0.86 kcal mol(-1) for 2-methyl-, 2-fluoro-, 2-methoxy-, and 2-hydroxytetrahydropyran, respectively. Note that the equatorial and axial conformers are nearly electronically isoenergetic in both fluoro- and methoxycyclohexane. For all eight cyclic species, a zero-point vibrational energy correction decreases Delta by a few tenths of a kilocalorie per mole. Relative energies obtained with popular methods and basis sets are unreliable, including Hartree-Fock theory, the B3LYP density functional, and the 6-31G and 6-311G families of split-valence basis sets. Even with the massive pentuple-zeta basis sets, the HF and B3LYP methods substantially overestimate the stability of the equatorial conformers (by as much as 0.99 and 0.73 kcal mol(-1), respectively, for 2-methoxytetrahydropyran). Only because of a consistent cancellation of errors do these popular approaches sometimes provide reasonable estimates of the anomeric effect.  相似文献   

17.
The conformational behavior and structural stability of 3,3-dichloropropanal and 3,3,3-trichloropropanal were investigated by ab initio calculations. The 6-311 + + G** basis set was employed to include polarization and diffuse functions in the calculations at B3LYP level. From the calculation, the trans conformer of 3,3,3-trichloropropanal was predicted to be the predominant conformer with about 2 kcal mol(-1) of energy lower than the cis form. Additionally, 3,3 dichloro-propanal was predicted to exist as a mixture of three stable conformers. The potential function scans were calculated for the two molecules from which the rotational barriers could be estimated. The vibrational frequencies were computed at B3LYP level and complete vibrational assignments were made based on normal coordinate calculations for the conformers of the two molecules. Vibrational Raman and infrared spectra of the mixture of the stable conformers were computed at 300 K.  相似文献   

18.
The conformational behavior and the structural stability of formyl fluoroketene, formyl chloroketene and formyl methylketene were investigated by utilizing quantum mechanical DFT calculations at B3LYP/6-31I + + G** and ab initio calculations at MP2/6-311 + + G** levels. The three molecules were predicted to have a planar s-cis<-->s-trans conformational equilibrium. From the calculations, the direction of the conformational equilibrium was found to be dependent on the nature of the substituting group. In formyl haloketenes, the cis conformation, where the C=O group eclipses the ketenic group, was expected to be of lower energy than the trans conformer. In the case of formyl methylketene the conformational stability was reversed and the trans form (the aldehydic hydrogen eclipsing the ketenic group) was calculated to be about 2 kcal mol(-1) lower in energy than the cis form. The calculated cis-trans energy barrier was found to be in the order: fluoride (15.3 kcal mol(-1)) > chloride (13.1 kcal mol(-1)) > methyl (11.7 kcal mol(-1). Full optimization was performed at the ground and the transition states of the molecules. The vibrational frequencies for the stable conformers of the three ketenic systems were computed at the DFT-B3LYP level, and the zero-point corrections were included into the calculated rotational barriers. Complete vibrational assignments were made on the basis of both normal coordinate calculations and comparison with experimental results of similar molecules.  相似文献   

19.
The structures, interaction energies, and proton-transfer features of some representative intermolecular complexes are determined by using a density functional which incorporates gradient corrections and, as recently suggested by Becke, some Hartree–Fock exchange. The results are compared with those obtained by high-order many-body perturbation theory and by a number of more conventional density functionals. Hydrogen-bond strengths and interatomic distances between heavy atoms are well reproduced by several density functionals. However, inclusion of some Hartree–Fock exchange is mandatory to improve XH bond lengths, and, especially, energy barriers governing proton transfer. Use of the new functional significantly improves the agreement with experimental and post-Hartree–Fock results. This paves the route for a detailed theoretical study of proton-transfer processes in large, biologically significant systems. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
The microwave spectrum of N-methylethylenediamine and several deuterated species has been investigated in the frequency range 26.5–40 GHz. The rotational spectra of two different conformers with a NH ⋯ N internal hydrogen bond have been assigned. Both conformers have the methyl group trans to the CC bond. The N atom connected to the methyl group acts as proton donor for a conformer (T1), and as acceptor for the second one (T2g). The former is more stable in energy by 0.65(15) kcal mol−1. Rotational lines of several vibrational satellites have been assigned in order to investigate their large amplitude motions and interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号