首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Chemistry & biology》1996,3(1):57-65
zIntroduction: Based on molecular modeling studies, a model has been proposed for intercalation of triple-helixspecific ligands (benzopyridoindole (BPI) derivatives) into triple helices, in which the intercalating compounds interact mainly with the Hoogsteen-paired strands of the triple helix. We set out to test this model experimentally using DNA duplexes capable of forming parallel Hoogsteen base-paired structures.Results: We have investigated the possible formation of a parallel DNA structure involving Hoogsteen hydrogen bonds by thermal denaturation, FTIR spectroscopy and gel-shift experiments. We show that BPI derivatives bind to Hoogsteen base-paired duplexes and stabilize them. The compounds induce a reorganization from a non-perfectly matched antiparallel Watson-Crick duplex into a perfectly matched parallel Hoogsteen-paired duplex.Conclusions: These results suggest that preferential intercalation of BPI derivatives in triple helices is due to their ability to interact specifically with the Hoogsteen-paired bases. The results are consistent with a model proposed on the basis of molecular modeling studies using energy minimization, and they open a new field of investigations regarding the biological relevance of Hoogsteen base-pairing.  相似文献   

2.
We describe the synthesis of the phosphoramidite building blocks of alpha-tricyclo-DNA (alpha-tc-DNA) covering all four natural bases, starting from the already known corresponding alpha-tc-nucleosides. These building blocks were used for the preparation of three alpha-tc-oligonucleotide 10-mers representing a homopurine, a homopyrimidine, and a mixed purine/pyrimidine base sequence. The base-pairing properties with complementary parallel and antiparallel oriented DNA and RNA were studied by UV-melting analysis and CD spectroscopy. We found that alpha-tc-DNA binds preferentially to parallel nucleic acid complements through Watson-Crick duplex formation, with a preference for RNA over DNA. In comparison with natural DNA, alpha-tc-DNA shows equal to enhanced affinity to RNA and also pairs to antiparallel DNA or RNA complements, although with much lower affinity. In the mixed-base sequence these antiparallel duplexes are of the reversed Watson-Crick type, while in the homopurine/homopyrimidine sequences Hoogsteen and/or reversed Hoogsteen pairing is observed. Antiparallel duplex formation of two alpha-tc-oligonucleotides was also observed, although the thermal stability of this duplex was surprisingly low. The base-pairing properties of alpha-tc-DNA are discussed in the context of alpha-DNA, alpha-RNA, and alpha-LNA.  相似文献   

3.
Novel selective non-hydrogen-bonding DNA base pairs utilizing fluorinated nucleoside analogues have been investigated. Melting studies of DNA duplexes containing 2,3,4,5-tetrafluorobenzene and 4,5,6,7-tetrafluoroindole bases on opposite strands show greater stabilization of the duplex compared with nonfluorinated hydrocarbon controls. Overall, these hydrophobic analogues are destabilizing compared with natural base pairs but are stabilizing compared with natural base mismatches. Such selective pairing may be due to solvent avoidance of these hydrophobic structures, burying their surfaces within the duplex. Our findings suggest that polyfluoroaromatic bases might be employed as a new, selective base-pairing system orthogonal to the natural genetic system.  相似文献   

4.
Glycol nucleic acid (GNA), with a nucleotide backbone comprising of just three carbons and the stereocenter derived from propylene glycol (1,2-propanediol), is a structural analog of nucleic acids with intriguing biophysical properties, such as formation of highly stable antiparallel duplexes with high Watson-Crick base pairing fidelity. Previous crystallographic studies of double stranded GNA (dsGNA) indicated two forms of backbone conformations, an elongated M-type (containing metallo-base pairs) and the condensed N-type (containing brominated base pairs). A herein presented new crystal structure of a GNA duplex at 1.8 ? resolution from self-complementary 3'-CTC(Br)UAGAG-2' GNA oligonucleotides reveals an N-type conformation with alternating gauche-anti torsions along its (O3'-C3'-C2'-O2') backbone. To elucidate the conformational state of dsGNA in solution, molecular dynamic simulations over a period of 20 ns were performed with the now available repertoire of structural information. Interestingly, dsGNA adopts conformational states in solution intermediate between experimentally observed backbone conformations: simulated dsGNA shows the all-gauche conformation characteristic of M-type GNA with the higher helical twist common to N-type GNA structures. The so far counterintuitive, smaller loss of entropy upon duplex formation as compared to DNA can be traced back to the conformational flexibility inherent to dsGNA but missing in dsDNA. Besides extensive interstrand base stacking and conformational preorganization of single strands, this flexibility contributes to the extraordinary thermal stability of GNA.  相似文献   

5.
The self‐complementary tetrameric propargyl triols 8, 14, 18 , and 21 were synthesized to investigate the duplex formation of self‐complementary, ethynylene‐linked UUAA, AAUU, UAUA, and AUAU analogues with integrated bases and backbone (ONIBs). The linear synthesis is based on repetitive Sonogashira couplings and C‐desilylations (34–72% yield), starting from the monomeric propargyl alcohols 9 and 15 and the iodinated nucleosides 3, 7, 11 , and 13 . Strongly persistent intramolecular H‐bonds from the propargylic OH groups to N(3) of the adenosine units prevent the gg‐type orientation of the ethynyl groups at C(5′). As such, an orientation is required for the formation of cyclic duplexes, this H‐bond prevents the formation of duplexes connected by all four base pairs. However, the central units of the UAUA and AAUU analogues 18 and 14 associate in CDCl3/(D6)DMSO 10 : 1 to form a cyclic duplex characterized by reverse Hoogsteen base pairing. The UUAA tetramer 8 forms a cyclic UU homoduplex, while the AUAU tetramer 21 forms only linear associates. Duplex formation of the O‐silylated UUAA and AAUU tetramers is no longer prevented. The self‐complementary UUAA tetramer 22 forms Watson–Crick‐ and Hoogsteen‐type base‐paired cyclic duplexes more readily than the sequence‐isomeric AAUU tetramer 23 , further illustrating the sequence selectivity of duplex formation.  相似文献   

6.
Poly d(A:T) parallel-stranded DNA duplexes based on the Hoogsteen and reverse Watson-Crick hydrogen bond pairing are studied by means of extensive molecular dynamics (MD) simulations and molecular mechanics coupled to Poisson-Boltzmann (MM-PB/SA) calculations. The structural, flexibility, and reactivity characteristics of Hoogsteen and reverse Watson-Crick parallel duplexes are described from the analysis of the trajectories. Theoretical calculations show that the two parallel duplexes are less stable than the antiparallel Watson-Crick duplex. The difference in stability between antiparallel and parallel duplexes increases steadily as the length of the duplex increases. The reverse Watson-Crick arrangement is slightly more stable than the Hoogsteen duplex, the difference being also increased linearly with the length of the duplex. A subtle balance of intramolecular and solvation terms is responsible for the preference of a given helical structure.  相似文献   

7.
The design, synthesis, and base-pairing properties of bicyclo[3.2.1]amide-DNA (bca-DNA), a novel phosphodiester-based DNA analogue, are reported. This analogue consists of a conformationally constrained backbone entity, which emulates a B-DNA geometry, to which the nucleo-bases were attached through an extended, acyclic amide linker. Homobasic adenine-containing bca decamers form duplexes with complementary oligonucleotides containing bca, DNA, RNA, and, surprisingly, also L-RNA backbones. UV and CD spectroscopic investigations revealed the duplexes with D- or L-complements to be of similar stability and enantiomorphic in structure. Bca oligonucleotides that contain all four bases form strictly antiparallel, left-handed complementary duplexes with themselves and with complementary DNA, but not with RNA. Base-mismatch discrimination is comparable to that of DNA, while the overall thermal stabilities of bca-oligonucleotide duplexes are inferior to those of DNA or RNA. A detailed molecular modeling study of left- and right-handed bca-DNA-containing duplexes showed only minor changes in the backbone structure and revealed a structural switch around the base-linker unit to be responsible for the generation of enantiomorphic duplex structures. The obtained data are discussed with respect to the structural and energetic role of the ribofuranose entities in DNA and RNA association.  相似文献   

8.
We present the crystal structure of the DNA duplex formed by d(ATATATCT). The crystals contain seven stacked antiparallel duplexes in the asymmetric unit with A.T Hoogsteen base pairs. The terminal CT sequences bend over so that the thymines enter the minor groove and form a hydrogen bond with thymine 2 of the complementary strand in the Hoogsteen duplex. Cytosines occupy extra-helical positions; they contribute to the crystal lattice through various kinds of interactions, including a unique CAA triplet. The presence of thymine in the minor groove apparently contributes to the stability of the DNA duplex in the Hoogsteen conformation. These observations open the way toward finding under what conditions the Hoogsteen duplex may be stabilized in vivo. The present crystal structure also confirms the tendency of A.T-rich oligonucleotides to crystallize as long helical stacks of duplexes.  相似文献   

9.
Peptide nucleic acid (PNA) is a synthetic analogue of DNA that commonly has an N‐aminoethyl glycine backbone. The crystal structures of two PNA duplexes, one containing eight standard nucleobase pairs (GGCATGCC)2, and the other containing the same nucleobase pairs and a central pair of bipyridine ligands, have been solved with a resolution of 1.22 and 1.10 Å, respectively. The non‐modified PNA duplex adopts a P‐type helical structure similar to that of previously characterized PNAs. The atomic‐level resolution of the structures allowed us to observe for the first time specific modes of interaction between the terminal lysines of the PNA and the backbone and the nucleobases situated in the vicinity of the lysines, which are considered an important factor in the induction of a preferred handedness in PNA duplexes. Our results support the notion that whereas PNA typically adopts a P‐type helical structure, its flexibility is relatively high. For example, the base‐pair rise in the bipyridine‐containing PNA is the largest measured to date in a PNA homoduplex. The two bipyridines bulge out of the duplex and are aligned parallel to the major groove of the PNA. In addition, two bipyridines from adjacent PNA duplexes form a π‐stacked pair that relates the duplexes within the crystal. The bulging out of the bipyridines causes bending of the PNA duplex, which is in contrast to the structure previously reported for biphenyl‐modified DNA duplexes in solution, where the biphenyls are π stacked with adjacent nucleobase pairs and adopt an intrahelical geometry. This difference shows that relatively small perturbations can significantly impact the relative position of nucleobase analogues in nucleic acid duplexes.  相似文献   

10.
We report the properties of hydrophobic isosteres of pyrimidines and purines in synthetic DNA duplexes. Phenyl nucleosides 1 and 2 are nonpolar isosteres of the natural thymidine nucleoside, and indole nucleoside 3 is an analog of the complementary purine 2-aminodeoxyadenosine. The nucleosides were incorporated into synthetic oligodeoxynucleotides and were paired against each other and against the natural bases. Thermal denaturation experiments were used to measure the stabilities of the duplexes at neutral pH. It is found that the hydrophobic base analogs are nonselective in pairing with the four natural bases but selective for pairing with each other rather than with the natural bases. For example, compound 2 selectively pairs with itself rather than with A, T, G, or C; the magnitude of this selectivity is found to be 6.5-9.3 °C in Tm or 1.5-1.8 kcal/mol in free energy (25 °C). All possible hydrophobic pairing combinations of 1, 2, and 3 were examined. Results show that the pairing affinity depends on the nature of the pairs and on position in the duplex. The highest affinity pairs are found to be the 1-1 and 2-2 self-pairs and the 1-2 heteropair. The best stabilization occurs when the pairs are placed at the ends of duplexes rather than internally; the internal pairs may be destabilized by imperfect steric mimicry which leads to non-ideal duplex structure. In some cases the hydrophobic pairs are significantly stabilizing to the DNA duplex; for example, when situated at the end of a duplex, the 1-1 pair is more stabilizing than a T-A pair. When situated internally, the affinity of the 1-1 pair is the same as, or slightly better than, the analogous T-T mismatch pair, which is known to have two hydrogen bonds. The studies raise the possibility that hydrogen bonds may not always be required for the formation of stable duplex DNA-like structure. In addition, the results point out the importance of solvation and desolvation in natural base pairing, and lend new support to the idea that hydrogen bonds in DNA may be more important for specificity of pairing than for affinity. Finally, the study raises the possibility of using these or related base pairs to expand the genetic code beyond the natural A-T and G-C pairs.  相似文献   

11.
Nucleic acid duplexes associating through purine-purine base pairing have been constructed and characterized in a remarkable demonstration of nucleic acids with mixed sequence and a natural backbone in an alternative duplex structure. The antiparallel deoxyribose all-purine duplexes associate specifically through Watson-Crick pairing, violating the nucleobase size-complementarity pairing convention found in Nature. Sequence-specific recognition displayed by these structures makes the duplexes suitable, in principle, for information storage and replication fundamental to molecular evolution in all living organisms. All-purine duplexes can be formed through association of purines found in natural ribonucleosides. Key to the formation of these duplexes is the N(3)-H tautomer of isoguanine, preferred in the duplex, but not in aqueous solution. The duplexes have relevance to evolution of the modern genetic code and can be used for molecular recognition of natural nucleic acids.  相似文献   

12.
Computational chemistry (B3LYP, MP2) is used to study the properties of size-expanded DNA nucleobases generated by inserting a benzene spacer into the natural nucleobases. Although the addition of the spacer does not significantly affect the hydrogen-bonding properties of natural nucleobases, the orientation of the base about the glycosidic bond necessary for Watson-Crick binding is destabilized, which could have implications for the selectivity of expanded bases, as well as the stability of expanded duplexes. Consideration of the (stacked) binding energies in the preferred relative orientation of natural and expanded nucleobases aligned according to their centers of mass reveals that the stacking within natural dimers can be increased by up to 50% upon expansion of one nucleobase and up to 90% upon expansion of two nucleobases. The implications of these findings to the stability of expanded duplexes were revealed by considering simplified models of natural and mixed duplexes composed of four nucleobases. Although intra- and interstrand interactions within double helices are typically less than those predicted when nucleobases are stacked according to their centers of mass, some nucleobases utilize their full stacking potential within double helices, where both intra- and interstrand interactions can be significant. Most importantly, increasing the size of nucleobases within the duplex significantly increases both intra- and interstrand stacking interactions. Specifically, some interactions are double the magnitude of the corresponding intrastrand interactions in natural helices, and even greater increases in interstrand interactions are sometimes found. Thus, our work suggests that mixed duplexes composed of natural bases hydrogen bound to expanded bases may exploit the increase in the inherent stacking ability of the expanded bases in more than one way and thereby afford duplexes with greater stability than natural DNA.  相似文献   

13.
《Chemistry & biology》1997,4(11):817-832
Background: Structural studies by nuclear magnetic resonance (NMR) of RNA and DNA aptamer complexes identified through in vitro selection and amplification have provided a wealth of information on RNA and DNA tertiary structure and molecular recognition in solution. The RNA and DNA aptamers that target ATP (and AMP)' with micromolar affinity exhibit distinct binding site sequences and secondary structures. We report below on the tertiary structure of the AMP-DNA aptamer complex in solution and compare it with the previously reported tertiary structure of the AMP-RNA aptamer complex in solution.Results: The solution structure of the AMP-DNA aptamer complex shows, surprisingly, that two AMP molecules are intercalated at adjacent sites within a rectangular widened minor groove. Complex formation involves adaptive binding where the asymmetric internal bubble of the free DNA aptamer zippers up through formation of a continuous six-base mismatch segment which includes a pair of adjacent three-base platforms. The AMP molecules pair through their Watson-Crick edges with the minor groove edges of guanine residues. These recognition G·A mismatches are flanked by sheared G·A and reversed Hoogsteen G·G mismatch pairs.Conclusions: The AMP-DNA aptamer and AMP-RNA aptamer complexes have distinct tertiary structures and binding stoichiometries. Nevertheless, both complexes have similar structural features and recognition alignments in their binding pockets. Specifically, AMP targets both DNA and RNA aptamers by intercalating between purine bases and through identical G·A mismatch formation. The recognition G·A mismatch stacks with a reversed Hoogsteen G·G mismatch in one direction and with an adenine base in the other direction in both complexes. It is striking that DNA and RNA aptamers selected independently from libraries of 1014 molecules in each case utilize identical mismatch alignments for molecular recognition with micromolar affinity within binding-site pockets containing common structural elements.  相似文献   

14.
We recently reported on the synthesis and pairing properties of the DNA analogue bicyclo[3.2.1]amide DNA (bca-DNA). In this analogue the nucleobases are attached via a linear, 4-bond amide-linker to a structurally preorganized sugar-phosphate backbone unit. To define the importance of the degree of structural rigidity of the bca-backbone unit on the pairing properties, we designed the structurally simpler cyclopentane amide DNA (cpa-DNA), in which the bicyclo[3.2.1]-scaffold was reduced to a cyclopentane unit while the base-linker was left unchanged. Here we present a synthetic route to the enantiomerically pure cpa-DNA monomers and the corresponding phosphoramidites containing the bases A and T, starting from a known, achiral precursor in 9 and 12 steps, respectively. Fully modified oligodeoxynucleotides were synthesized by standard solid-phase oligonucleotide chemistry, and their base-pairing properties with complementary oligonucleotides of the DNA-, RNA-, bca-DNA-, and cpa-DNA-backbones were assessed by UV melting curves and CD-spectroscopic methods. We found that cpa-oligoadenylates form duplexes with complementary DNA that are less stable by -2.7 degrees C/mod. compared to DNA. The corresponding cpa-oligothymidylates do not participate in complementary base-pairing with any of the investigated backbone systems except with its own (homo-duplex). As its congener bca-DNA, cpa-DNA seems to prefer left-handed helical duplex structures with DNA or with itself as indicated by the CD spectra.  相似文献   

15.
Simultaneous interaction of the 2′-aminoethoxy-modified oligonucleotides with the phosphodiester backbone (shown on the right, A) and with the bases through Hoogsteen base contacts (B) is seen at each base-pair step of the duplex DNA target. The electrostatic interaction between the protonated amino group and the negatively charged phosphate group provides for a dramatic increase in the binding affinity and the association rate constant.  相似文献   

16.
The syntheses of six different phosphoramidite building blocks of 6-oxocytosine and 5-allyl-6-oxocytosine as analogues of N(3)-protonated cytosine are described. These compounds have been incorporated into oligonucleotides by standard solid-phase synthesis. Hybridization of 15-mer Hoogsteen strands with target 21-mer duplexes was investigated. Comparison of the triplex-forming abilities of the different building blocks revealed that: i) 5-allyl substitution has a negative influence on triplex stability, ii) a uniform backbone of the Hoogsteen strand stabilizes triplexes relative to mixed backbones; iii) RNA strands with 6-oxocytidine or 5-allyl-6-oxocytidine do not form a triple helix with the DNA target duplex, probably due to backbone torsional constraints; and (iv) a 15-mer DNA sequence with three isolated 2'-deoxy-6-oxocytidines has the highest T(m) of all cytidine analogues investigated in this study. CD experiments provided further evidence for the presence or absence of triplex structures. In the course of these temperature-dependent CD measurements we were able to detect duplex and triplex melting independent from each other at selected wavelengths. This methodology is especially interesting in cases where UV melting curves show only one transition owing to spectral overlap.  相似文献   

17.
Among the distinct strategies proposed to expand the genetic alphabet, size-expanded nucleobases are promising for the development of modified DNA duplexes with improved biotechnological properties. In particular, duplexes built up by replacing canonical bases with the corresponding benzo-fused counterparts could be valuable as molecular nanowires. In this context, this study reports the results of classical molecular dynamics simulations carried out to examine the structural and dynamical features of size-expanded DNAs, including both hybrid duplexes containing mixed pairs of natural and benzo-fused bases (xDNA) and pure size-expanded (xxDNA) duplexes. Furthermore, the electronic structure of both natural and size-expanded duplexes is examined by means of density functional computations. The results confirm that the structural and flexibility properties of the canonical DNA are globally little affected by the presence of benzo-fused bases. The most relevant differences are found in the enhanced size of the grooves, and the reduction in the twist. However, the analysis also reveals subtle structural effects related to the nature and sequence of benzo-fused bases in the duplex. On the other hand, electronic structure calculations performed for xxDNAs confirm the reduction in the HOMO-LUMO gap predicted from the analysis of the natural bases and their size-expanded counterparts, which suggests that pure size-expanded DNAs can be good conductors. A more complex situation is found for xDNAs, where fluctuations in the electrostatic interaction between base pairs exerts a decisive influence on the modulation of the energy gap.  相似文献   

18.
The effect of molecular crowding on the structure and stability of biomolecules has become a subject of increasing interest because it can clarify how biomolecules behave under cell-mimicking conditions. Here, we quantitatively analyzed the effects of molecular crowding on the thermodynamics of antiparallel G-quadruplex formation via Hoogsteen base pairs and of antiparallel hairpin-looped duplex (HP duplex) formation via Watson-Crick base pairs. The free energy change at 25 degrees C for G-quadruplex formation decreased from -3.5 to -5.5 kcal mol(-1) when the concentration of poly(ethylene glycol) 200 was increased from 0 to 40 wt %, whereas that of duplex formation increased from -9.8 to -6.9 kcal mol(-1). These results showed that the antiparallel G-quadruplex is stabilized under molecular crowding conditions, but that the HP duplex is destabilized. Moreover, plots of stability (ln K(obs)) of the DNA structures versus water activity (ln a(w)) demonstrated that the ln K(obs) for G-quadruplex formation decreased linearly as the ln a(w) increased, whereas that for duplex formation increased linearly with the increase in ln a(w), suggesting that the slope approximately equals the number of water molecules released or taken up during the formation of these structures. Thus, molecular crowding affects the thermodynamics of DNA structure formation by altering the hydration of the DNA. The stabilization of the DNA structures with Hoogsteen base pairs and destabilization of DNA structures with Watson-Crick base pairs under molecular crowding conditions lead to structural polymorphism of DNA sequences regulated by the state of hydration.  相似文献   

19.
FTIR spectroscopy has been used to follow the formation of parallel stranded DNA duplexes incorporating isoG or m5isoC bases and determine their base pairing scheme. The results are discussed in comparison with data concerning anti-parallel duplexes with comparable base composition and sequence. In duplexes containing A-T and isoG-C or m5isoC-G base pairs shifts of the thymine C2=O2 and C4=O4 carbonyl stretching vibrations (to lower and higher wavenumbers, respectively, when compared to their positions in classical cis Watson-Crick (WC) base pairs) reflect the formation of trans Watson-Crick A-T base pairs. All carbonyl groups of cytosines, m5isocytosines, guanines and isoguanines are found to be involved in hydrogen bonds, indicative of the formation of isoG-C and m5isoC-G base pairs with three hydrogen bonds. Molecular modeling shows that both structures form regular right handed helices with C2'endo sugar puckers. The role of the water content on the helical conformation of the parallel duplexes has been studied by FTIR and CD. It is found that a conformational transition similar to the B --> A transition observed for anti-parallel duplexes induced by a decrease of the water content of the samples can occur for these parallel duplexes. Their helical flexibility has been evidenced by FTIR studies on hydrated films by the emergence of absorption bands characteristic of A type geometry, in particular by an S-type --> N-type repuckering of the deoxyribose. All sugars in the parallel duplex with alternating d(isoG-A)/d(C-T) sequence can adopt an N-type geometry in low water content conditions. The conformational transition of the parallel hairpin duplex with alternating d(isoG-A)/d(C-T) sequence was followed by circular dichroism in water/trifluoroethanol solutions and its free energy at 0 degrees C was estimated to be 6.6 +/- 0.3 kcal mol(-1).  相似文献   

20.
The stabilities of duplexes formed by strands of novel artificial nucleic acids composed of acyclic threoninol nucleic acid (aTNA) and serinol nucleic acid (SNA) building blocks were compared with duplexes formed by the acyclic glycol nucleic acid (GNA), peptide nucleic acid (PNA), and native DNA and RNA. All acyclic nucleic acid homoduplexes examined in this study had significantly higher thermal stability than DNA and RNA duplexes. Melting temperatures of homoduplexes were in the order of aTNA>PNA≈GNA≥SNA?RNA>DNA. Thermodynamic analyses revealed that high stabilities of duplexes formed by aTNA and SNA were due to large enthalpy changes upon formation of duplexes compared with DNA and RNA duplexes. The higher stability of the aTNA homoduplex than the SNA duplex was attributed to the less flexible backbone due to the methyl group of D ‐threoninol on aTNA, which induced clockwise winding. Unlike aTNA, the more flexible SNA was able to cross‐hybridize with RNA and DNA. Similarly, the SNA/PNA heteroduplex was more stable than the aTNA/PNA duplex. A 15‐mer SNA/RNA was more stable than an RNA/DNA duplex of the same sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号