首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs – one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an “exotic” power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.  相似文献   

2.
We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs – one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an “exotic” power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.  相似文献   

3.
熵与绝热去磁制冷的物理原理   总被引:2,自引:0,他引:2  
本文从熵的观点出发,利用热力学,统计物理与量子力学理论分别从宏观与微观的角度对磁制冷的物理原理进行了初等分析。  相似文献   

4.
In 1953, Stueckelberg and Wanders derived the basic laws of relativistic linear nonequilibrium thermodynamics for chemically reacting fluids from the relativistic local conservation laws for energy-momentum and the local laws of production of substances and of non-negative entropy production by the requirement that the corresponding currents (assumed to depend linearly on the first derivatives of the state variables) should not be independent. Generalizing their method, we determine the most general allowed form of the energy-momentum tensor Tαβ and of the corresponding rate of entropy production under the same restriction on the currents. The problem of expressing this rate in terms of thermodynamic forces and fluxes is discussed in detail; it is shown that the number of independent forces is not uniquely determined by the theory, and several possibilities are explored. A number of possible new cross effects are found, all of which persist in the Newtonian (low-velocity) limit. The treatment of chemical reactions is incorporated into the formalism in a consistent manner, resulting in a derivation of the law for rate of production, and in relating this law to transport processes differently than suggested previously. The Newtonian limit is discussed in detail to establish the physical interpretation of the various terms of Tαβ. In this limit, the interpretation hinges on that of the velocity field characterizing the fluid. If it is identified with the average matter velocity following from a consideration of the number densities, the usual local conservation laws of Newtonian nonequilibrium thermodynamics are obtained, including that of mass. However, a slightly different identification allows conversion of mass into energy even in this limit, and thus a macroscopic treatment of nuclear or elementary particle reactions. The relation of our results to previous work is discussed in some detail.  相似文献   

5.
In the paper, a new construction of the theory of partitions of integers is proposed. The author defines entropy as the natural logarithm of the number of partitions of a number M into natural summands with repetitions allowed p(M) and repetitions forbidden q(M). The passage from ln p(M) to lnq(M) through the mesoscopic values M → 0 is studied. The topological transition from the mesoscopic lower levels of the Bohr–Kalckar construction to the macroscopic levels corresponding to the critical number of neutrons according to the consequence of Einstein’s inequality Mc N c , where c is determined for the particles of the given atomic nucleus. The role of quantum mechanics in establishing the new world outlook in physics is analyzed. It is pointed out that the main equations of thermodynamics in the volume “Statistical Physics” of the Landau–Lifshits treatise are obtained without appealing to the so-called “three main principles of thermodynamics”. It is also pointed out that Niels Bohr’s liquid model of the nucleus does not involve any interaction of particles in the form of attraction and is based on the presence of a common potential trough for all elements of the nucleus. The author constructs a new approach to thermodynamics, using quantum mechanics and the Earth’s gravitational attraction as a common potential trough.  相似文献   

6.
曾晓雄  周史薇  刘文彪 《中国物理 B》2012,21(9):90402-090402
The recent work of Nation et al., in which the Hawking radiation energy and entropy flow from a black hole is considered to be produced in a one-dimensional Landauer transport process, is extended to the case of a Reissner- Nordstrom black hole. The energy flow contains not only the contribution of the thermal flux but also that of the particle flux. It is found that the charge can also be transported via the one-dimensional quantum tunnel. Because of the existence of the electrostatic potential, the entropy production rate is shown to be smaller than that of the Schwarzschild black hole.  相似文献   

7.
Boltzmann’s statistical thermodynamics is a mathematical theory which relates the macroscopic properties of aggregates of interacting molecules with the laws of their interaction. The theory is based on the concept thermodynamic entropy, a statistical measure of the extent to which energy is spread throughout macroscopic matter. Macroscopic evolution of material aggregates is quantitatively explained in terms of the principle: Thermodynamic entropy increases as the composition of the aggregate changes under molecular collision.  相似文献   

8.
9.
10.
11.
《Nuclear Physics B》1995,456(3):732-752
Following the work of Sen, we consider the correspondence between extremal black holes and string states in the context of the entropy. We obtain and study properties of electrically charged black hole backgrounds of tree level heterotic string theory compactified on a p-dimensional torus, for D = (10 − p) = 4,…,9. We study in particular a one-parameter extremal class of these black holes, the members of which are shown to be supersymmetric. We find that the entropy of such an extremal black hole, when calculated at the stringy stretched horizon, scales in such a way that it can be identified with the entropy of the elementary string state with the corresponding quantum numbers.  相似文献   

12.
We investigate some aspects of black hole (BH) thermodynamics in the framework of a modified dispersion relation. We calculate a minimal length and a maximal momentum to find a relation between spacetime dimensions and the presence of logarithmic prefactor in the black hole entropy relation. We show that the logarithmic prefactor appears not only in an even number of dimensions but also in an odd number of dimensions. In addition, the sign of the logarithmic factor is different for positive values of α in all dimensions. Using the corrected entropy, the black hole radiation probability is calculated in the tunneling formalism, which is corrected up to the same order of the Planck length and shows a more probable quantum tunneling.  相似文献   

13.
Spacetime is expected to have a “foamlike” structure on scales of the Planck length or less with high curvatures and complicated topology. This foam can be thought of as being built out of three basic kinds of units or “gravitational bubbles”, CP2, S2 × S2 and K3. We investigate the propagation of particles in simple models of the first two types of bubble. The non-trivial topologies of the bubbles introduce extra singularities into the Green functions. These make large contributions to the S-matrix for scalar particles but only small contributions for spin-12 or 1 particles at energies small compared to the Planck length. These results suggest that there is no inconsistency between the spacetime foam picture and everyday observations from which spacetime appears nearly flat, because all the elementary particles we have observed have spin 12 or greater. They do, however, suggest that Higgs scalar fields, if they exist at all, are probably bound states of higher spin particles rather than being elementary fields. Further developments may enable one to calculate processes in which quantum coherence is lost and intrinsic entropy is produced.  相似文献   

14.
We lay down a series of postulates which we consider indespensable for any measure of the intrinsic dispersion of quantum states. Then we show that the v. Neumann entropy S(W)=–kTr(WlnW) is uniquely determined by these postulates up to a scaling factor. Thus the v. Neumann entropy can be characterized as the only reasonable measure of the intrinsic dispersion of quantum states. Our postulates have no direct bearing on phenomenological thermodynamics or information theory.  相似文献   

15.
The standard textbooks contain good explanations of how and why equilibrium thermodynamics emerges in a reservoir with particles that are subjected to Gaussian noise. However, in systems that convert or transport energy, the noise is often not Gaussian. Instead, displacements exhibit an α-stable distribution. Such noise is commonly called Lévy noise. With such noise, we see a thermodynamics that deviates from what traditional equilibrium theory stipulates. In addition, with particles that can propel themselves, so-called active particles, we find that the rules of equilibrium thermodynamics no longer apply. No general nonequilibrium thermodynamic theory is available and understanding is often ad hoc. We study a system with overdamped particles that are subjected to Lévy noise. We pick a system with a geometry that leads to concise formulae to describe the accumulation of particles in a cavity. The nonhomogeneous distribution of particles can be seen as a dissipative structure, i.e., a lower-entropy steady state that allows for throughput of energy and concurrent production of entropy. After the mechanism that maintains nonequilibrium is switched off, the relaxation back to homogeneity represents an increase in entropy and a decrease of free energy. For our setup we can analytically connect the nonequilibrium noise and active particle behavior to entropy decrease and energy buildup with simple and intuitive formulae.  相似文献   

16.
Recent years have seen the flourishing of research devoted to quantum effects on mesoscopic and macroscopic scales. In this context, in Entropy 2019, 21, 705, a formalism aiming at describing macroscopic quantum fields, dubbed Reduced State of the Field (RSF), was envisaged. While, in the original work, a proper notion of entropy for macroscopic fields, together with their dynamical equations, was derived, here, we expand thermodynamic analysis of the RSF, discussing the notion of heat, solving dynamical equations in various regimes of interest, and showing the thermodynamic implications of these solutions.  相似文献   

17.
The microscopic features of bosonic quantum transport in a nonequilibrium steady state, which breaks time reversal invariance spontaneously, are investigated. The analysis is based on the probability distributions, generated by the correlation functions of the particle current and the entropy production operator. The general approach is applied to an exactly solvable model with a point‐like interaction driving the system away from equilibrium. The quantum fluctuations of the particle current and the entropy production are explicitly evaluated in the zero frequency limit. It is shown that all moments of the entropy production distribution are non‐negative, which provides a microscopic version of the second law of thermodynamics. On this basis a concept of efficiency, taking into account all quantum fluctuations, is proposed and analyzed. The role of the quantum statistics in this context is also discussed.  相似文献   

18.
刘成周  邓岳君  骆叶成 《物理学报》2018,67(6):60401-060401
利用黑洞的绝热不变性,研究了引力彩虹时空中Kerr黑洞的熵谱和面积谱.首先,在引力彩虹时空背景下,计算了Kerr黑洞的绝热不变作用量,并将其与玻尔-索末菲量子化条件相结合,给出了黑洞的熵谱.得到的熵谱没有引力彩虹时空本身具有的粒子能量依赖性,且是与经典Kerr黑洞中原始贝肯斯坦熵谱相同的等间距熵谱.然后,根据黑洞热力学第一定律和黑洞熵谱,给出了与原始贝肯斯坦谱不同的面积谱.该面积谱是非等间距的,而且有对黑洞面积的依赖性,但不依赖于探测粒子的能量.面积谱表明,随着黑洞面积的减少,面积间隔逐步变小;当黑洞达到普朗克尺度时,面积量子可降为零.这表示黑洞面积不再减少,黑洞出现辐射剩余.而在忽略色散关系的修正效应或在大黑洞极限下,面积谱的修正项可以忽略,引力彩虹Kerr黑洞面积谱可以回归到原始贝肯斯坦谱.此外,对引力彩虹时空Kerr黑洞的熵进行了讨论,得到了带有面积倒数修正项的黑洞熵,分析了黑洞熵的量子修正与面积谱量子修正的一致性.  相似文献   

19.
A generalization of the Gibbs–von Neumann entropy is proposed based on the quantum BBGKY (Bogolyubov–Born–Green–Kirkwood–Yvon) hierarchy as the non-equilibrium entropy for an NN-body system. By using a generalization of the Liouville–von Neumann equation describing the evolution of a density superoperator, the entropy production for an isolated system is calculated, being non-zero in general. The existence of a non-zero entropy production allows us, following the procedure of non-equilibrium thermodynamics to introduce a master matrix for which a microscopic expression is obtained. After this, as a test of our theory the quantum Boltzmann equation is derived in terms of a transition superoperator related to this master matrix.  相似文献   

20.
Thermodynamic uncertainty principles make up one of the few rare anchors in the largely uncharted waters of nonequilibrium systems, the fluctuation theorems being the more familiar. In this work we aim to trace the uncertainties of thermodynamic quantities in nonequilibrium systems to their quantum origins, namely, to the quantum uncertainty principles. Our results enable us to make this categorical statement: For Gaussian systems, thermodynamic functions are functionals of the Robertson-Schrödinger uncertainty function, which is always non-negative for quantum systems, but not necessarily so for classical systems. Here, quantum refers to noncommutativity of the canonical operator pairs. From the nonequilibrium free energy, we succeeded in deriving several inequalities between certain thermodynamic quantities. They assume the same forms as those in conventional thermodynamics, but these are nonequilibrium in nature and they hold for all times and at strong coupling. In addition we show that a fluctuation-dissipation inequality exists at all times in the nonequilibrium dynamics of the system. For nonequilibrium systems which relax to an equilibrium state at late times, this fluctuation-dissipation inequality leads to the Robertson-Schrödinger uncertainty principle with the help of the Cauchy-Schwarz inequality. This work provides the microscopic quantum basis to certain important thermodynamic properties of macroscopic nonequilibrium systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号