首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
4.
We have recently developed a new class IV charge model for calculating partial atomic charges in molecules. The new model, called charge model 3 (CM3), was parameterized for calculations on molecules containing H, Li, C, N, O, F, Si, S, P, Cl, and Br by Hartree–Fock theory and by hybrid density functional theory (HDFT) based on the modified Perdew–Wang density functional with several basis sets. In the present article, we extend CM3 for calculating partial atomic charges by Hartree–Fock theory with the economical but well balanced MIDI! basis set. Then, using a test set of accurate dipole moments for molecules containing nitramine functional groups (which include many high-energy materials), we demonstrate the utility of several parameters designed to improve the charges in molecules containing both N and O atoms. We also show that one of our most recently developed CM3 models that is designed for use with wave functions calculated at the mPWXPW91/MIDI! level of theory (where X denotes a variable percentage of Hartree–Fock exchange) gives accurate charge distributions in nitramines without additional parameters for N and O. To demonstrate the reliability of partial atomic charges calculated with CM3, we use these atomic charges to calculate polarization free energies for several nitramines, including the commonly used explosives 1,3,5-trinitro-s-triazine (RDX) and 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW), in nitromethane. These polarization energies are large and negative, indicating that electrostatic interactions between the charge distribution of the molecule and the solvent make a large contribution to the free energy of solvation of nitramines. By extension, the same conclusion should apply to solid-state condensation. Also, in contrast to some other charge models, CM3 yields atomic charges that are relatively insensitive to the presence of buried atoms and small conformational changes in the molecule, as well as to the level of treatment of electron correlation. This type of charge model should be useful in the future development of solvation models and force fields designed to estimate intramolecular interactions of nitramines in the condensed phase.  相似文献   

5.
Two novel approaches to construct empirical schemes for partial atomic charge calculation were proposed. The charge schemes possess important benefits. First, they produce both topologically symmetrical and environment dependent charges. Second, they can be parameterised to reasonably reproduce ab initio molecular electrostatic potential (MEP), which guarantees their successful use in molecular modelling. To validate the approaches, the parameters of the proposed charge schemes were fitted to best reproduce MEP simultaneously on grids around a set of 227 diverse organic compounds. The residual errors in MEP reproduction due to calculated atomic charges were compared to those due to charges from known charge schemes.  相似文献   

6.
7.
Various methods for deriving atomic partial charges from the quantum chemical electrostatic potential and moments have been tested for the sucrose molecule. We show that if no further information is used, the charges on some carbon atoms become large and charge patterns involving these atoms are badly determined and poorly transferable. Adding lone-pairs on the ether oxygen atoms or dividing the molecule into smaller fragments did not cure the instabilities. We develop a method, CHELP-BOW0, that restrains charges toward zero with different weights for different atoms. These harmonic restraints preserve the linear form of the least-squares equations, which are solved in a single step using singular-value decomposition. CHELP-BOW0 improves the chemical transferability of the charges compared to unrestrained methods, and slightly improves their conformational transferability. It introduces a modest degradation of the fit compared to unrestrained CHELP-BOW (mean average deviation of the potential 0.00016 vs. 0.00010 a.u.). A second new method, CHELP-BOWC, avoids the need for restraints by including several conformations in the fit, weighting each according to its estimated energy in solution. CHELP-BOWC charges are more transferable than CHELP-BOW or CHELP-BOW0 charges to conformations not included in the training set. Restraints to zero charge do not further improve transferability of the CHELP-BOWC charges. We, therefore, recommend CHELP-BOW charges for rigid molecules and CHELP-BOWC charges for flexible molecules.  相似文献   

8.
本文提出一种简捷计算分子中原子净电荷的新方法。用这种方法计算了23种一元取代苯的原子净电荷。计算所得苯环上碳原子净电荷与其 ̄(13)C-NMR化学位移有良好的线性关系。利用苯环上碳原子净电荷及立体参数作为输入参数,应用人工神经网络方法预报24种一元取代苯硝化反应的邻、间、对位产物产率,结果良好。  相似文献   

9.
Solvated ensemble averaging in the calculation of partial atomic charges   总被引:3,自引:0,他引:3  
In the calculation of partial atomic charges, for use in molecular mechanics or dynamics simulations, it is common practice to select only a single conformation for the molecule of interest. For molecules that contain rotatable bonds, it is preferable to compute the charges from several relevant conformations. We present here results from a charge derivation protocol that determines the partial charges by averaging charges computed for conformations selected from explicitly solvated MD simulations, performed under periodic boundary conditions. This approach leads to partial charges that are weighted by a realistic population of conformations and that are suitable for condensed phase simulations. This protocol can, in principle, be applied to any class of molecule and to nonaqueous solvation. Carbohydrates contain numerous hydroxyl groups that exist in an ensemble of orientations in solution, and in this report we apply ensemble averaging to a series of methyl glycosides. We report the extent to which ensemble averaging leads to charge convergence among the various monosaccharides and among the constituent atoms within a given monosaccharide. Due to the large number of conformations (200) in our ensembles, we are able to compute statistically relevant standard deviations for the partial charges. An analysis of the standard deviations allows us to assess the extent to which equivalent atom types may, nevertheless, require unique partial charges. The configurations of the hydroxyl groups exert considerable influence on internal energies, and the limits of ensemble averaged charges are discussed in terms of these properties.  相似文献   

10.
11.
A new method for performing molecular dynamics simulations with fluctuating charge polarizable potentials is introduced. In fluctuating charge models, polarizability is treated by allowing the partial charges to be variables, with values that are coupled to charges on the same molecule as well as those on other molecules. The charges can be efficiently propagated in a molecular dynamics simulation using extended Lagrangian dynamics. By making a coordinate change from the charge variables to a set of normal mode charge coordinates for each molecule, a new method is constructed in which the normal mode charge variables uncouple from those on the same molecule. The method is applied to the TIP4P-FQ model of water and compared to other methods for implementing the dynamics. The methods are compared using different molecular dynamics time steps.  相似文献   

12.
CNDO/2 calculations with an spd basis set have been carried out on methyl-phenylsilane anion radicals, and the calculated spin density values compared with the experimental hyperfine coupling constants. The CNDO method overestimates the role of d orbitals and the partial charges on hydrogen atoms attached to silicon atom. The partial charge distribution and the carbonsilicon bond order in the anion radicals and the corresponding neutral molecules are discussed. The equilibrium carbonsilicon bond distance in the trimethylphenylsilane molecule and corresponding anion radical have also been investigated.  相似文献   

13.
Absolute free energies of hydration (DeltaGhyd) have been computed for 25 diverse organic molecules using partial atomic charges derived from AM1 and PM3 wave functions via the CM1 and CM3 procedures of Cramer, Truhlar, and coworkers. Comparisons are made with results using charges fit to the electrostatic potential surface (EPS) from ab initio 6-31G* wave functions and from the OPLS-AA force field. OPLS Lennard-Jones parameters for the organic molecules were used together with the TIP4P water model in Monte Carlo simulations with free energy perturbation theory. Absolute free energies of hydration were computed for OPLS united-atom and all-atom methane by annihilating the solutes in water and in the gas phase, and absolute DeltaGhyd values for all other molecules were computed via transformation to one of these references. Optimal charge scaling factors were determined by minimizing the unsigned average error between experimental and calculated hydration free energies. The PM3-based charge models do not lead to lower average errors than obtained with the EPS charges for the subset of 13 molecules in the original study. However, improvement is obtained by scaling the CM1A partial charges by 1.14 and the CM3A charges by 1.15, which leads to average errors of 1.0 and 1.1 kcal/mol for the full set of 25 molecules. The scaled CM1A charges also yield the best results for the hydration of amides including the E/Z free-energy difference for N-methylacetamide in water.  相似文献   

14.
15.
We present the first global parameterization and validation of a novel charge model, called AM1-BCC, which quickly and efficiently generates high-quality atomic charges for computer simulations of organic molecules in polar media. The goal of the charge model is to produce atomic charges that emulate the HF/6-31G* electrostatic potential (ESP) of a molecule. Underlying electronic structure features, including formal charge and electron delocalization, are first captured by AM1 population charges; simple additive bond charge corrections (BCCs) are then applied to these AM1 atomic charges to produce the AM1-BCC charges. The parameterization of BCCs was carried out by fitting to the HF/6-31G* ESP of a training set of >2700 molecules. Most organic functional groups and their combinations were sampled, as well as an extensive variety of cyclic and fused bicyclic heteroaryl systems. The resulting BCC parameters allow the AM1-BCC charging scheme to handle virtually all types of organic compounds listed in The Merck Index and the NCI Database. Validation of the model was done through comparisons of hydrogen-bonded dimer energies and relative free energies of solvation using AM1-BCC charges in conjunction with the 1994 Cornell et al. forcefield for AMBER.(13) Homo- and hetero-dimer hydrogen-bond energies of a diverse set of organic molecules were reproduced to within 0.95 kcal/mol RMS deviation from the ab initio values, and for DNA dimers the energies were within 0.9 kcal/mol RMS deviation from ab initio values. The calculated relative free energies of solvation for a diverse set of monofunctional isosteres were reproduced to within 0.69 kcal/mol of experiment. In all these validation tests, AMBER with the AM1-BCC charge model maintained a correlation coefficient above 0.96. Thus, the parameters presented here for use with the AM1-BCC method present a fast, accurate, and robust alternative to HF/6-31G* ESP-fit charges for general use with the AMBER force field in computer simulations involving organic small molecules.  相似文献   

16.
The Gibbs energy of hydration is an important quantity to understand the molecular behavior in aqueous systems at constant temperature and pressure. In this work we review the performance of some popular force fields, namely TraPPE, OPLS-AA and Gromos, in reproducing the experimental Gibbs energies of hydration of several alkyl-aromatic compounds--benzene, mono-, di- and tri-substituted alkylbenzenes--using molecular simulation techniques. In the second part of the paper, we report a new model that is able to improve such hydration energy predictions, based on Lennard Jones parameters from the recent TraPPE-EH force field and atomic partial charges obtained from natural population analysis of density functional theory calculations. We apply a scaling factor determined by fitting the experimental hydration energy of only two solutes, and then present a simple rule to generate atomic partial charges for different substituted alkyl-aromatics. This rule has the added advantages of eliminating the unnecessary assumption of fixed charge on every substituted carbon atom and providing a simple guideline for extrapolating the charge assignment to any multi-substituted alkyl-aromatic molecule. The point charges derived here yield excellent predictions of experimental Gibbs energies of hydration, with an overall absolute average deviation of less than 0.6 kJ mol(-1). This new parameter set can also give good predictive performance for other thermodynamic properties and liquid structural information.  相似文献   

17.
Continuum solvent models have shown to be very efficient for calculating solvation energy of biomolecules in solution. However, in order to produce accurate results, besides atomic radii or volumes, an appropriate set of partial charges of the molecule is needed. Here, a set of partial charges produced by a fluctuating charge model-the atom-bond electronegativity equalization method model (ABEEMσπ) fused into molecular mechanics is used to fit for the analytical continuum electrostatics model of generalized-Born calculations. Because the partial atomic charges provided by the ABEEMσπ model can well reflect the polarization effect of the solute induced by the continuum solvent in solution, accurate and rapid calculations of the solvation energies have been performed for series of compounds involving 105 small neutral molecules, twenty kinds of dipeptides and several protein fragments. The solvation energies of small neutral molecules computed with the combination of the GB model with the fluctuating charge protocol (ABEEMσπ∕GB) show remarkable agreement with the experimental results, with a correlation coefficient of 0.97, a slope of 0.95, and a bias of 0.34 kcal∕mol. Furthermore, for twenty kinds of dipeptides and several protein fragments, the results obtained from the analytical ABEEMσπ∕GB model calculations correlate well with those from ab initio and Poisson-Boltzmann calculations. The remarkable agreement between the solvation energies computed with the ABEEMσπ∕GB model and PB model provides strong motivation for the use of ABEEMσπ∕GB solvent model in the simulation of biochemical systems.  相似文献   

18.
19.
A general methodology for deriving geometry-dependent atomic charges is presented. The main ingredient of the method is a model that describes the molecular dipole moment in terms of geometry-dependent point charges. The parameters of the model are determined from ab initio calculations of molecular dipole moments and their Cartesian derivatives at various molecular geometries. Transferability of the parameters is built into the model by fitting ab initio calculations for various molecules simultaneously. The results show that charge flux along the bonds is a major contributing factor to the geometry dependence of the atomic charges, with additional contributions from fluxes along valence angles and adjacent bonds. Torsion flux is found to be smaller in magnitude than the bond and valence angle fluxes but is not always unimportant. A set of electrostatic parameters is presented for alkanes, aldehydes, ketones, and amides. Transferability of these parameters for a host of molecules is established to within 3 ?5% error in the predicted dipole moments. A possible extension of the method to include atomic dipoles is outlined. With the inclusion of such atomic dipoles and with the set of transferable point charges and charge flux parameters, it is demonstrated that molecular electrostatic potentials as well as electrostatic forces on nuclei can be reproduced much better than is possible with other models (such as potential derived charges). © 1995 by John Wiley & Sons, Inc.  相似文献   

20.
Gaussian-3 ground-state total electronic energies have been approximated using single point 6-31G(d) basis set Harteee–Fock self-consistent-field (HF-SCF) total energies and partial charges based on our earlier rapid estimation of correlation energy from partial charges method. Sixty-five closed-shell neutral molecules (composed of H, C, N, O, and F atoms) of the G2/97 thermochemistry database were selected for the present study. The main feature in this work is that the␣basis set error has been treated by the least squares fit of rapid estimation of basis set error and correlation energy from partial charges (REBECEP) atomic parameters. With these parameters a rather accurate closed-shell ground-state electronic total energy can be obtained from a small basis set HF-SCF calculation in the vicinity of stationary points. The average absolute deviation of the best REBECEP enthalpies of formation from the experimental enthalpies of formation is 1.39 kcal/mol for the test set of 65 enthalpies of neutral molecules. Received: 11 December 2000 / Accepted: 6 February 2001/Published online: 11 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号