首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
For an evaporating colloidal suspension in which the evaporation velocity exceeds the sedimentation velocity, particles will accumulate at the solvent-air interface. If neither diffusion nor convection can disperse this accumulation, it is expected to grow into a colloidal multilayer several microns thick. We observe that the thickness of colloidal crystals vertically deposited from 1 mum diameter polystyrene latex suspensions of 0.002 < or = phi < or = 0.008 increases linearly with distance in the growth direction and that these thickness profiles are consistent with their growth from a horizontal colloidal layer accumulated beneath the solvent-air interface. We describe a means for performing vertical deposition at growth rates slower than the evaporation rate by adding solvent to the bottom of the colloidal suspension and observe that halving the growth rate of vertical deposition increases both the thickness and the reflectivity of the resulting colloidal crystals, effects indistinguishable from those of doubling the concentration of the colloidal suspension, data also consistent with the colloidal crystals' growth from a horizontal layer of particles beneath the interface. If sufficiently little reorganization is involved as particles move from this horizontal layer to the vertically deposited colloidal crystal, slow vertical deposition of polymer microspheres might be thought of as the Langmuir-Blodgett transfer of a horizontal colloidal crystal onto a vertical substrate. Colloidal crystals deposited using both high concentration and slowed growth can have peak IR reflectance in excess of 80%, exceeding most published values. These observations provide a conceptual framework for engineering vertically deposited colloidal crystals that combine thickness with good optical performance.  相似文献   

2.
采用流动控制沉积法,通过调控泵速和聚甲基丙烯酸甲酯(PMMA)胶体微球溶液的浓度,制备出微球排列高度有序且薄膜紧密附着于基底的高质量光子晶体薄膜。获得了制备高质量PMMA光子晶体薄膜的组装条件范围,发现在该条件范围内,当泵速或胶体微球溶液浓度一定时,PMMA光子晶体薄膜的厚度随胶体微球溶液浓度的增加或泵速的降低而增加。研究了组装条件对PMMA光子晶体薄膜光学性能的影响,发现光子禁带位置随光子晶体薄膜厚度增加或减少而红移或蓝移。在此基础上,控制组装条件得到了不同尺寸微球堆叠而成的叠层光子晶体薄膜,并研究了其光学性能的变化规律。结果显示,叠层光子晶体薄膜的光子禁带峰为各层叠层光子晶体禁带峰的简单叠加,且峰强度受光入射角方向影响。  相似文献   

3.
以改进的对流自组装方法制备层数可控的胶体光子晶体, 并通过各向同性氧等离子体(O2 Plasma)刻蚀构造出梯度结构, 进一步通过金(Au)及无定形硅(Si)的可控沉积调节梯度结构胶体光子晶体的光子禁带, 并将该梯度结构用于罗丹明B的荧光发射增强.  相似文献   

4.
We investigated driven crystal formation events in thin layers of sedimented colloidal particles under low salt conditions. Using optical microscopy, we observe particles in a thermodynamically stable colloidal fluid to move radially converging towards cation exchange resin fragments acting as seed particles. When the local particle concentration has become sufficiently large, subsequently crystallization occurs. Brownian dynamics simulations of a 2D system of purely repulsive point-like particles exposed to an attractive potential, yield strikingly similar scenarios, and kinetics of accumulation and micro-structure formation. This offers the possibility of flexibly designing and manufacturing thin colloidal crystals at controlled positions and thus to obtain specific micro-structures not accessible by conventional approaches. We further demonstrate that particle motion is correlated with the existence of a gradient in electrolyte concentration due to the release of electrolyte by the seeds.  相似文献   

5.
Photonic crystals and photonic band gap materials with periodic variation of the dielectric constant in the submicrometer range exhibit unique optical properties such as opalescence, optical stop bands, and photonic band gaps. As such, they represent attractive materials for the active elements in sensor arrays. Colloidal crystals, which are 3D gratings leading to Bragg diffraction, are one potential precursor of such optical materials. They have gained particular interest in many technological areas as a result of their specific properties and ease of fabrication. Although basic techniques for the preparation of regular patterns of colloidal crystals on structured substrates by self-assembly of mesoscopic particles are known, the efficient fabrication of colloidal crystal arrays by simple contact printing has not yet been reported. In this article, we present a spotting technique used to produce a microarray comprising up to 9600 single addressable sensor fields of colloidal crystal structures with dimensions down to 100 mum on a microfabricated substrate in different formats. Both monodisperse colloidal crystals and binary colloidal crystal systems were prepared by contact printing of polystyrene particles in aqueous suspension. The array morphology was characterized by optical light microscopy and scanning electron microscopy, which revealed regularly ordered crystalline structures for both systems. In the case of binary crystals, the influence of the concentration ratio of the large and small particles in the printing suspension on the obtained crystal structure was investigated. The optical properties of the colloidal crystal arrays were characterized by reflection spectroscopy. To examine the stop bands of the colloidal crystal arrays in a high-throughput fashion, an optical setup based on a CCD camera was realized that allowed the simultaneous readout of all of the reflection spectra of several thousand sensor fields per array in parallel. In agreement with Bragg's relation, the investigated arrays exhibited strong opalescence and stop bands in the expected wavelength range, confirming the successful formation of highly ordered colloidal crystals. Furthermore, a narrow distribution of wavelength-dependent stop bands across the sensor array was achieved, demonstrating the capability of producing highly reproducible crystal spots by the contact printing method with a pintool plotter.  相似文献   

6.
7.
Fluorescence light emitted from photoexcited rhodamine 6G (R6G) doped in colloidal crystals of exhaustively deionized colloidal silica suspension is partially trapped within a crystal cage. This photon trapping is caused by Bragg reflection in crystal lattices. The photon trapping efficiencies were quantitatively examined as a function of the thickness of measurement cell. The efficiency increased from about 40 to 60% as the cell thickness increased from 1 to 10 mm for an R6G concentration of 5×10−6 mol/L. This result is attributed to an increase in the number of crystal layers perpendicular to the observation direction; these are formed in the cell with a large optical path length. On the other hand, the trapping efficiencies were constant irrespective of the angle between the incident and observed light of the cylindrical cells. The constant efficiencies are attributed to the fact that the heterogeneous crystal layers around the inner cell wall have the same thickness.  相似文献   

8.
A single-domain colloidal crystal with high transmission quality, prepared by a shear-induced process, was fixed as a hydrogel film by photopolymerization. Upon gelation, the original optical quality was almost perfectly preserved. By replacing the solvent, the gelled crystal could be converted to smaller lattice constant crystals without significant degradation in its transmission characteristics. The conversion results in a stop-band wavelength coverage across the entire visible light range.  相似文献   

9.
The structure, crystal growth kinetics and rigidity of colloidal crystals of core–shell-type latex spheres (diameters 280–330 nm) with differences in shell rigidity have been studied in aqueous suspension, mainly by reflection spectroscopy. The suspensions were deionized exhaustively for more than 2 years using mixed-bed ion-exchange resins. The five kinds of core–shell spheres examined form colloidal crystals, where the critical sphere concentrations, c, of crystallization (or melting) are high and range from 0.01 to 0.06 in volume fraction. Nearest-neighbor intersphere distances in the crystal lattice agree satisfactorily with values calculated from the sphere diameter and concentration. The crystal growth rates are between 0.1 and 0.3 s–1 and decrease slightly as the sphere concentration increases, indicating that the crystal growth rates are from the secondary process in the colloidal crystallization mechanism, corresponding to reorientation from metastable crystals formed in the primary process and/or Ostwald-ripening process. The rigidities of the crystals range from 2 to 200 Pa, and increase sharply as the sphere concentration increases. The g factor, the parameter for crystal stability, is around 0.02 irrespective of the sphere concentration and/or the kind of core–shell sphere. There are no distinct differences in the structural, kinetic and elastic properties among the colloidal crystals of the different core–shell-type spheres, showing that the internal sphere structure does not affect the properties of the colloidal crystals. The results show that colloidal crystals form in a closed container owing to long-range repulsive forces and the Brownian movement of colloidal spheres surrounded by extended electrical double layers and that their formation is not influenced by the rigidity and internal structure of the spheres.  相似文献   

10.
We report the formation of a new class of supported membranes consisting of a fluid phospholipid bilayer coupled directly to a broadly tunable colloidal crystal with a well-defined photonic band gap. For nanoscale colloidal crystals exhibiting a band gap at the optical frequencies, substrate-induced vesicle fusion gives rise to a surface bilayer riding onto the crystal surface. The bilayer is two-dimensionally continuous, spanning multiple beads with lateral mobilities which reflect the coupling between the bilayer topography and the curvature of the supporting colloidal surface. In contrast, the spreading of vesicles on micrometer scale colloidal crystals results in the formation of bilayers wrapping individual colloidal beads. We show that simple UV photolithography of colloidal crystals produces binary patterns of crystal wettabilities, photonic stopbands, and corresponding patterns of lipid mono- and bilayer morphologies. We envisage that these approaches will be exploitable for the development of optical transduction assays and microarrays for many membrane-mediated processes, including transport and receptor-ligand interactions.  相似文献   

11.
Nonspherical colloids and their ordered arrays may be more attractive in applications such as photonic crystals than their spherical counterparts because of their lower symmetries, although such structures are difficult to achieve. In this letter, we describe the fabrication and characterization of colloidal crystals constructed from nonspherical polyhedrons. We fabricated such nonspherical colloidal crystals by pressing spherical polymer colloidal crystal chips at a temperature slightly lower than the glass-transition temperature (T(g)) of these polymer colloids. During this process, the polymer microspheres were distinctively transformed into polyhedrons according to their crystal structures, whereas the long-range order of the 3D lattice was essentially preserved. Because a working temperature lower than T(g) effectively prevented the colloidal crystals from fusing into films, the spherical colloidal crystals were transformed greatly under pressure, which lead to obvious change in the optical properties of colloidal crystals. Besides their special symmetry and optical properties, these nonspherical colloidal crystals can be used as templates for 2D or 3D structures of special symmetry, such as 2D nano-networks. We anticipate that this fabrication technique for nonspherical colloidal crystals can also be extended to nonspherical porous materials.  相似文献   

12.
The influence of various experimental parameters on the vertical deposition and structure formation of colloidal crystals on chemically patterned surfaces, with hydrophilic and hydrophobic areas, was investigated. The pattern dimensions range from about 4 to 400 microm, which is much larger than the individual particle size (255 nm), to control the microscopic crystal shape rather than influencing the crystal lattice geometry (as achieved in colloidal epitaxy). The deposition resolution and selectivity were tested by varying the particle concentration in the suspension, the substrate withdrawing speed, pattern size and orientation, and wetting contrast between the hydrophilic and hydrophobic regions. The evolution of colloidal crystal thickness with respect to the pattern dimensions and deposition parameters was further studied. Our results show that the pattern size has a rather strong influence on the deposited number of colloid layers and on the crystal quality. Better results are obtained when the lines of a stripe pattern are oriented parallel to the withdrawing direction rather than perpendicular. The deposition resolution (defined as the minimum feature size on which particles can be deposited) depends on the wetting contrast and increases with lower average hydrophobicity of the substrate.  相似文献   

13.
The scattering study of ionic colloidal crystals by using one- and two-dimensional ultra-small-angle scattering techniques is reviewed with a special reference to dilute dispersions. Because of large lattice constants of colloidal crystals, ultra-small angle regions need to be covered either by long distance optical systems combined with a synchrotron X-ray source or by adopting the Bonse–Hart optics. The crystal structure, lattice constant, and crystal orientation can be precisely determined.  相似文献   

14.
Self-assembled colloidal crystals have attracted major attention because of their potential as low-cost three-dimensional (3D) photonic crystals. Although a high degree of perfection is crucial for the properties of these materials, little is known about their exact structure and internal defects. In this study, we use tomographic scanning transmission X-ray microscopy (STXM) to access the internal structure of self-assembled colloidal photonic crystals with high spatial resolution in three dimensions for the first time. The positions of individual particles of 236 nm in diameter are identified in three dimensions, and the local crystal structure is revealed. Through image analysis, structural defects, such as vacancies and stacking faults, are identified. Tomographic STXM is shown to be an attractive and complementary imaging tool for photonic materials and other strongly absorbing or scattering materials that cannot be characterized by either transmission or scanning electron microscopy or optical nanoscopy.  相似文献   

15.
For the application of colloidal crystal films as "photonic band gap" materials, their domain size and thickness are significant. The substrate withdrawing speed, the colloidal suspension volume fraction, and the colloidal suspension temperature have been studied for the domain size and thickness controls of colloidal crystals in this study. Stable dispersions of monodispersed polystyrene spheres with a diameter of 245 nm were synthesized according to a general emulsion polymerization for colloidal crystal films. By experimental results and the theoretical relationship between the number of layers and other parameters, we could know that the water bridge between colloidal spheres (which is formed by capillary force) influences the number of colloidal crystal layers significantly.  相似文献   

16.
采用垂直沉积技术及相应的改进方法,使用化学合成的400 nm单分散二氧化硅微球自组装制备了胶体晶体薄膜。通过扫描电镜与分光光度计对样品的微观结构与透过光谱进行了表征,并对比研究了不同的垂直沉积方法对胶体晶体的影响。结果表明,通过温度与流量控制两种改进手段,均能制备具有六方密堆结构周期排列的胶体晶体薄膜。在垂直沉积过程中适当的升高温度有利于降低胶体粒子的用量,而通过流量控制的垂直沉积技术则可以有效缩短自组装时间。通过调节蠕动泵改变液面与基板的相对运动速度,或者调控温度改变胶体溶液的蒸发速率,可在材料表面形成单层或多层的胶体晶体薄膜。改进的垂直沉积技术将有望应用于快速沉积大面积、高质量的胶体晶体材料。  相似文献   

17.
采用乳液聚合法制得亚微米级聚苯乙烯单分散微球,并用蒸发自组装法在乳液气-液界面进行自上而下的层层组装,制得了厚度在450μm以上的三维有序胶体晶体。结果表明,影响胶体晶体有序性的关键因素是对蒸发速度的控制,促使胶体晶体规则排列的最主要作用力为溶液的毛细管力。在胶体晶体组装末期,随着溶剂量的减少,空间阻力逐渐增大,微球对流能力下降,造成胶体晶体的有序性降低。  相似文献   

18.
A rather simple but yet effective way to self-assemble polystyrene (PS) beads in gradient colloidal crystal topography is proposed. The PS bead concentration, solvent, and substrate have a big effect on the colloidal crystal topography. Whether the gradient-shaped crystals can form or not depends on the Bond number [Bo; the ratio of gravitational potential energy (G) to adhesive energy (E(a)), or gravitational to capillary forces]. When Bo < 1, that is, the capillary force dominates over the gravitational force, the liquid meniscus is stable. The gradient-shaped crystals can form. Otherwise, PS beads form a uniform multilayer structure.  相似文献   

19.
Colloidal crystal films: advances in universality and perfection   总被引:6,自引:0,他引:6  
For three-dimensional photonic crystals, made either by top-down microfabrication or by bottom-up self-assembly approaches, to comply with the stringent requirements of optical telecommunication applications, their degree of structural perfection and optical quality must meet an exceptionally high standard. Only with such superior quality photonic crystals can their unique optical properties be harnessed in optical devices and circuits constructed from micrometer-sized optical components. In this paper, we present a new strategy for making silica colloidal crystal films with a sufficiently high level of structural perfection and optical quality to make it competitive as a practical route to photonic crystal optical components. The attainment of this goal takes due cognizance of three key synergistic factors in the film formation process. The first recognizes the necessity to prepare high-quality silica spheres, which are highly monodisperse, with a polydispersity index significantly better than 2%, and the second recognizes that the population of spheres must be devoid of even the smallest fraction of substantially smaller or larger spheres or sphere doublets. The latter turns out to have a minimal effect on the polydispersity index, and yet a major detrimental effect on the overall structural order of the film. The third concerns the film-forming method itself, which necessitated the development of a novel process founded upon isothermal heating evaporation-induced self-assembly (IHEISA) of spheres on a planar substrate. This new method has several advantages over previously reported ones. It is able to deposit very high-quality silica colloidal crystal film rapidly over large areas, with a controlled thickness and without any restrictions on sphere sizes.  相似文献   

20.
The optical and electro-optical properties of filled nematic liquid crystals, nematic systems with added colloidal silica nanoparticles (? 6%), have been studied. The macroscopic near IR birefringence of cells constructed from these materials was measured for wavelengths between 2 and 5 mum, and a wavelength independent value of 0.16 was obtained. The visible optical behaviour of cells formed with untreated ITO substrates using both filled nematic, and filled nematic and dichroic dyes was similar to those observed in polymer dispersed liquid crystals. At an electric field of 1–2 V μm -1, the cells were highly transmitting, while at low fields they were highly scattering. The effects of colloidal silica nanoparticle concentration, cell thickness, electric field and substrate preparation (rubbed polyimide versus no surface treatment) on the electro-optical behaviour of these cells were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号