首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the ligand-exchange reaction between the optically inactive racemic penicillamine monolayer on a silver nanocluster surface and enantiopure D- or L-penicillamine dissolved in solution. Emergence of the identical band positions in the gel electrophoresis separation assures the presence of size-invariant silver nanoclusters (1.05 and 1.30 nm in core diameter) during the ligand-exchange reaction and allows us to further examine the optical/chiroptical properties of these nanoclusters. Consequently, chiral functionalization of the achiral silver nanoclusters has been demonstrated, yielding large Cotton effects in metal-based electronic transitions with an almost mirror-image relationship between the enantiomeric compounds. The ligand-exchange experiments as well as the normal syntheses of the silver nanoclusters revealed that their absorption profiles and anisotropy factors were strongly dependent on the enantiomeric purity (or enantiomeric excess) of surface chiral penicillamine, so that (several-fold) larger chiroptical responses of the silver nanoclusters as compared to those of the analogous gold clusters with a comparable size could be induced by the metal core deformation or rearrangement along with a universally influential vicinal contribution from the chiral ligand field.  相似文献   

2.
The chirality of a gold nanocluster can be generated from either an intrinsically chiral inorganic core or an achiral inorganic core in a chiral environment. The first structural determination of a gold nanocluster containing an intrinsic chiral inorganic core is reported. The chiral gold nanocluster [Au20(PP3)4]Cl4 (PP3=tris(2‐(diphenylphosphino)ethyl)phosphine) has been prepared by the reduction of a gold(I)–tetraphosphine precursor in dichloromethane solution. Single‐crystal structural determination reveals that the cluster molecular structure has C3 symmetry. It consists of a Au20 core consolidated by four peripheral tetraphosphines. The Au20 core can be viewed as the combination of an icosahedral Au13 and a helical Y‐shaped Au7 motif. The identity of this Au20 cluster is confirmed by ESI‐MS. The chelation of multidentate phosphines enhances the stability of this Au20 cluster.  相似文献   

3.
We have succeeded for the first time in preparing a pair of gold nanocluster enantiomers protected by optically active thiols: D- and L-penicillamine (D-Pen and L-Pen). Circular dichroism (CD) spectroscopy confirmed the mirror image relationship between the D-Pen-capped and the L-Pen-capped gold nanoclusters, suggesting that the surface modifier acts as a chiral selector, and that the nanoclusters have well-defined stereostructures as common chiral molecules do. No CD signals could be obtained when the gold nanoclusters were synthesized by using a racemic mixture (rac-Pen). These chiroptical properties were investigated for the three separated fractions of each of the gold nanoclusters (D-Pen-capped, L-Pen-capped, or rac-Pen-capped clusters) by polyacrylamide gel electrophoresis (PAGE). Each fractioned component has the mean diameter of 0.57, 1.18, or 1.75 nm that was determined by a solution-phase small-angle X-ray scattering. With a decrease in the mean cluster diameter, optical activity or anisotropy factors gradually increased. On the basis of the kinetic and the structural considerations, the origins of large optical activity of the gold nanocluster enantiomers are discussed.  相似文献   

4.
The transition from molecular to plasmonic behaviour in metal nanoparticles with increasing size remains a central question in nanoscience. We report that the giant 246‐gold‐atom nanocluster (2.2 nm in gold core diameter) protected by 80 thiolate ligands is surprisingly non‐metallic based on UV/Vis and femtosecond transient absorption spectroscopy as well as electrochemical measurements. Specifically, the Au246 nanocluster exhibits multiple excitonic peaks in transient absorption spectra and electron dynamics independent of the pump power, which are in contrast to the behaviour of metallic gold nanoparticles. Moreover, a prominent oscillatory feature with frequency of 0.5 THz can be observed in almost all the probe wavelengths. The phase and amplitude analysis of the oscillation suggests that it arises from the wavepacket motion on the ground state potential energy surface, which also indicates the presence of a small band‐gap and thus non‐metallic or molecular‐like behaviour.  相似文献   

5.
Decreasing the core size is one of the best ways to study the evolution from AuI complexes into Au nanoclusters. Toward this goal, we successfully synthesized the [Au18(SC6H11)14] nanocluster using the [Au18(SG)14] (SG=L ‐glutathione) nanocluster as the starting material to react with cyclohexylthiol, and determined the X‐ray structure of the cyclohexylthiol‐protected [Au18(C6H11S)14] nanocluster. The [Au18(SR)14] cluster has a Au9 bi‐octahedral kernel (or inner core). This Au9 inner core is built by two octahedral Au6 cores sharing one triangular face. One transitional gold atom is found in the Au9 core, which can also be considered as part of the Au4(SR)5 staple motif. These findings offer new insight in terms of understanding the evolution from [AuI(SR)] complexes into Au nanoclusters.  相似文献   

6.
ESR spectroscopy has been used to study the interaction of para-pentylbenzyl hydroxyalkyl nitroxide with the monolayer of water-soluble protected gold clusters having a core diameter ranging from 1.6 to 5.3 nm. The solubilization of the nitroxide probe in the more hydrophobic environment of the monolayer strongly depends on the size of the gold core. In particular, the partition equilibrium constant increases as the nanoparticle diameter decreases. These results have been attributed to the different packing of the chains in the monolayer resulting from the different radius of curvature of the investigated nanoparticles. This represents, to the best of our knowledge, the first report demonstrating that the core size of metallic nanoparticles affects the solvating properties of the protective organic monolayer.  相似文献   

7.
A pair of chiral nanocluster complexes were formed by the host−guest interaction between the enantiomeric 2,6-helic[6]arenes and nanocluster Ag20. The formation and stability of the nanocluster complexes were experimentally and theoretically confirmed. Meanwhile, the chiral nanocluster complexes exhibited enhanced luminescence and induced CD signals at room temperature in the solid state, revealing the stable complexation and chirality transfer from the chiral macrocycles to the nanocluster Ag20.  相似文献   

8.
We report the X‐ray structure of a gold nanocluster with 30 gold atoms protected by 18 1‐adamantanethiolate ligands (formulated as Au30(S‐Adm)18). This nanocluster exhibits a threefold rotationally symmetrical, hexagonal‐close‐packed (HCP) Au18 kernel protected by six dimeric Au2(SR)3 staple motifs. This new structure is distinctly different from the previously reported Au30S(S‐tBu)18 nanocluster protected by 18 tert‐butylthiolate ligands and one sulfido ligand with a face‐centered cubic (FCC) Au22 kernel. The Au30(S‐Adm)18 nanocluster has an anomalous solubility (it is only soluble in benzene but not in other common solvents). This work demonstrates a ligand‐based strategy for controlling nanocluster structure and also provides a method for the discovery of possibly overlooked clusters because of their anomalous solubility.  相似文献   

9.
Surface-enhanced Raman (SER) spectra are reported for several adsorbates at underpotential deposited (upd) layers of mercury, thallium, and lead on an electrochemically roughened gold electrode. For upd mercury monolayers, SER bands were obtained for the surface-halide stretching mode, νM-X, of adsorbed chloride and bromide that are of comparable intensities to those observed on the unmodified gold substrate. The νM-X peak frequencies are downshifted by 15–24 cm−1 on the former relative to the latter surface, consistent with a smaller extent of halide bond covalency on mercury. These spectral changes induced by upd formation could be reversed by anodic stripping of the mercury monolayer. Comparable results were also obtained by prior formation of the upd monolayer in a separate solution followed by electrode transfer rather than by deposition in the solution of interest. Satisfactory SER spectra at upd mercury are reported additionally for thiocyanate and pyridine, as are similar experiments for upd thallium and lead layers on gold. Of the above adsorbates, only pyridine yielded easily measurable SER spectra for these layers, having 2–3 fold smaller signal intensities than on unmodified gold. The SERS intensity decreases upon thallium, and lead upd formation exhibited both irreversible and reversible components. Differential capacitance-potential plots for upd mercury indicate some similarities to liquid mercury interfaces. The results indicate that overlayers on gold provide a means of extending SERS to metals that in themselves do not exhibit suitable Raman scattering enhancements.  相似文献   

10.
Ligand place‐exchange (LPE) reactions are extensively applied for the post‐functionalization of monolayer‐protected gold clusters (MPCs) by using excessive incoming ligands to displace initial ones. However, the modified MPCs are often enlarged or degraded; this results in ill‐defined size‐dependent properties. The growth of MPCs essentially involves an unprotected surface that is subsequently has gold atoms added or is fused with other gold cores owing to collision. Reported herein is a guideline for the selection of solvents to suppress unwanted MPC growth. Favorable solvents are those with significant affinity to gold or with low solubility for desorbed ligands because these properties retard LPE reactions and minimize the time available for unprotected gold cores. This finding provides a general and convenient approach to regulate the size of functionalized MPCs.  相似文献   

11.
The incorporation of dialkyl sulfide side chains in metallodendrimers is a simple method for their insertion into a monolayer of decanethiol formed by self-assembly on a gold surface. The dendrimer binds through the sulfide group to a defect in the monolayer on the gold surface (see picture). The surface concentration of the isolated dendrimer adsorbate can be regulated by the adsorption time (for example, 55 adsorbates on a surface of 200×200 nm2 after 20 h).  相似文献   

12.
Biological homochirality on earth and its tremendous consequences for pharmaceutical science and technology has led to an ever increasing interest in the selective production, the resolution and the detection of enantiomers of a chiral compound. Chiral surfaces and interfaces that can distinguish between enantiomers play a key role in this respect as enantioselective catalysts as well as for separation purposes. Despite the impressive progress in these areas in the last decade, molecular-level understanding of the interactions that are at the origin of enantiodiscrimination are lagging behind due to the lack of powerful experimental techniques to spot these interactions selectively with high sensitivity. In this article, techniques based on infrared spectroscopy are highlighted that are able to selectively target the chiral properties of interfaces. In particular, these methods are the combination of Attenuated Total Reflection InfraRed (ATR-IR) with Modulation Excitation Spectroscopy (MES) to probe enantiodiscriminating interactions at chiral solid-liquid interfaces and Vibrational Circular Dichroism (VCD), which is used to probe the structure of chirally-modified metal nanoparticles. The former technique aims at suppressing signals arising from non-selective interactions, which may completely hide the signals of interest due to enantiodiscriminating interactions. Recently, this method was successfully applied to investigate enantiodiscrimination at self-assembled monolayers of chiral thiols on gold surfaces. The nanometer size analogues of the latter--gold nanoparticles protected by a monolayer of a chiral thiol--are amenable to VCD spectroscopy. It is shown that this technique yields detailed structural information on the adsorption mode and the conformation of the adsorbed thiol. This may also turn out to be useful to clarify how chirality can be bestowed onto the metal core itself and the nature of the chirality of the latter, which is manifested in the metal-based circular dichroism activity of these nanoparticles.  相似文献   

13.
In this paper we describe a systematic study comparing the properties of self-assembled monolayers (SAMs) formed by in situ deprotection and assembly of S-triphenylmethyl (trityl)- and thiolacetate-protected alkanethiols to those of SAMs formed from the parent alkanethiols. The two in situ deprotections were carried out in trifluoroacetic acid and THF/ammonium hydroxide, respectively. Monolayers of octadecanethiol (ODT) and the peptide-containing alkanethiol 3-mercapto-N-n-pentadecylpropionamide (1ATC15) were assembled on gold using the two in situ methods and characterized by contact angle goniometry, X-ray photoelectron spectroscopy, polarization modulation infrared reflection absorption spectroscopy, and electrochemical characterization methods to assess how the monolayer properties compare to those of monolayers prepared by traditional methods. The results for the in situ deprotection of the trityl-protected molecules demonstrate that this method can afford high-quality monolayers that are nearly indistinguishable from those prepared directly from alkanethiols. The quality of the monolayers prepared using this method is shown to depend on the solubility of the trityl-protected compound in trifluoroacetic acid. The results for the in situ deprotection of acetyl-ODT indicate this method yields low-quality monolayers that contain mixtures of adsorbates bound as thiolates and thiolacetates. In situ trityl deprotection is a useful approach for monolayer formation that greatly simplifies the purification, handling, and assembly of thiol-containing monolayer precursors.  相似文献   

14.
Au20(PP3)4Cl4 (PP3=tris(2‐(diphenylphosphino)ethyl) phosphine), abbreviated as Au20, is the only Au nanocluster with an intrinsically chiral core without a chiral environment (chiral ligands or Au‐thiolate staples), making it a unique object to understand chiral evolution and explore chiral applications. Unfortunately, the synthesized Au20 is racemic, and its enantiomers have not yet been separated. Herein, we report a supramolecular assembly strategy with α‐cyclodextrin (α‐CD) to afford enantiopure Au20 in bulk, and an enantiomer excess (ee) value of as‐separated Au20 of 97 %. As a result of its high purity, the distinctive optical activity of Au20, which originates from electronic transitions confined in chiral cores, is fully explored. Theoretical studies reveals that the enantioseparation results from the preferential self‐assembly of α‐CD with organic ligands on the surface of right‐handed Au20.  相似文献   

15.
Small gold clusters (<1 nm), protected by monolayers of glutathione, N-(2-mercaptopropionyl)glycine, or mercaptosuccinic acid, were prepared by reducing the corresponding Au(I)-thiolate polymers and were fractionated by size using polyacrylamide gel electrophoresis (PAGE). Mass analysis of the fractionated clusters revealed that their core sizes varied with the molecular structures of the thiolates. This finding indicates that the reduction of the Au(I)-thiolate polymers yields small clusters whose growth is kinetically hindered by passivation with thiolates. Optical spectra of the clusters with identical compositions exhibited different profiles depending on the thiolate molecular structures. This observation implies that deformation of the underlying gold cores is induced by interligand interactions.  相似文献   

16.
The dissymmetric interaction between circularly polarised (CP) light and chiral molecules is central to a range of areas, from spectroscopy and imaging to next-generation photonic devices. However, the selectivity in absorption or emission of left-handed versus right-handed CP light is low for many molecular systems. In this perspective, we assess the magnitude of the measured chiroptical response for a variety of chiral systems, ranging from small molecules to large supramolecular assemblies, and highlight the challenges towards enhancing chiroptical activity. We explain the origins of low CP dissymmetry and showcase recent examples in which molecular design, and the modification of light itself, enable larger responses. Our discussion spans spatial extension of the chiral chromophore, manipulation of transition dipole moments, exploitation of forbidden transitions and creation of macroscopic chiral structures; all of which can increase the dissymmetry. Whilst the specific strategy taken to enhance the dissymmetric interaction will depend on the application of interest, these approaches offer hope for the development and advancement of all research fields that involve interactions of chiral molecules and light.

This perspective explores the dissymmetric interaction between circularly polarised (CP) light and chiral molecules. Such interactions are central to many applications from next generation displays to asymmetric photochemical synthesis.  相似文献   

17.
In this communication, we report our first study of self-assembled adsorbates on metal surfaces. Specifically, we studied single-crystal clean surfaces of Au(111) with and without a monolayer of reaction involving the assembly of 2-mercaptoacetic acid from 2,2'-dithiodiacetic acid. We also studied monolayers of iron hemes. With ultrafast electron crystallography, we are able to observe and isolate structural dynamics of the substrate (gold) and adsorbate(s) following an ultrafast temperature jump.  相似文献   

18.
对单分子层保护的金纳米团簇(Au-MPCs)进行化学修饰,可制成多元单层修饰的金纳米团簇(Au-MMPCs)。常用的修饰方法为配体交换法,这种方法用带有生物活性基团的巯基化合物或二硫化合物取代Au-MPCs表面的配体分子,形成多元单层修饰的金纳米团簇。巯基化合物或二硫化合物中的生物活性基团可使所制备Au-MMPCs与蛋白质、核酸或细胞膜等作用,使Au-MMPCs具有相应的生物活性,从而能广泛应用于细胞转染、药物传输、酶活性调控等生物医学领域。本文介绍了用Brust-Schiffrin法制备Au-MMPCs的机理及影响因素,基于Au-MMPCs的方法及相关机理,综述了Au-MMPCs在生物医学中的应用。  相似文献   

19.
Self-assembled monolayers (SAMs) of N-heterocyclic olefins (NHOs) have been prepared on Au(111) and their thermal stability, adsorption geometry, and molecular order were characterized by X-ray photoelectron spectroscopy, polarized X-ray absorption spectroscopy, scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. The strong σ-bond character of NHO anchoring to Au induced high geometrical flexibility that enabled a flat-lying adsorption geometry via coordination to a gold adatom. The flat-lying adsorption geometry was utilized to further increase the surface interaction of the NHO monolayer by backbone functionalization with methyl groups that induced high thermal stability and a large impact on work-function values, which outperformed that of N-heterocyclic carbenes. STM measurements, supported by DFT modeling, identified that the NHOs were self-assembled in dimers, trimers, and tetramers constructed of two, three, and four complexes of NHO−Au-adatom. This self-assembly pattern was correlated to strong NHO−Au interactions and steric hindrance between adsorbates, demonstrating the crucial influence of the carbon-metal σ-bond on monolayer properties.  相似文献   

20.
Kernel atoms of Au nanoclusters are packed layer‐by‐layer along the [001] direction with every full (001) monolayer composed of 8 Au atoms (Au8 unit) in nanoclusters with formula of Au8n+4(TBBT)4n+8 (n is the number of Au8 units; TBBTH=4‐tert‐butylbenzenelthiol). It is unclear whether the kernel atoms can be stacked in a defective‐layer way along the [001] direction during growth of the series of nanoclusters and how the kernel layer number affects properties. Now, a nanocluster is synthesized that is precisely characterized by mass spectrometry and single‐crystal X‐ray crystallography, revealing a layer stacking mode in which a half monolayer composed of 4 atoms (Au4 unit) is stacked on the full monolayer along the [001] direction. The size and the odevity of the kernel layer number influence the properties (polarity, photoluminescence) of gold nanoclusters. The obtained nanocluster extends the previous formula from Au8n+4(TBBT)4n+8 to Au4n+4(TBBT)2n+8 (n is the number of Au4 units).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号