首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LiMo 3Se 3 nanowire film sensors were fabricated by drop-coating a 0.05% (mass) aqueous nanowire solution onto microfabricated indium tin oxide electrode pairs. According to scanning electron microscopy (SEM) and atomic force microscopy (AFM), the films are made of a dense network of 3-7 nm thick nanowire bundles. Immersion of the films in 1.0 M aqueous solutions of group 1 or 2 element halides or of Zn(II), Mn(II), Fe(II), or Co(II) chlorides results in an increase of the electrical resistance of the films. The resistance change is always positive and reaches up to 9% of the base resistance of the films. It occurs over the course of 30-240 s, and it is reversible for monovalent ions and partially reversible for divalent ions. The signal depends on the concentration of the electrolyte and on the size and charge of the metal cation. Anions do not play a significant role, presumably, because they are repelled by the negatively charged nanowire strands. The magnitude of the electrical response and its sign suggest that it is due to analyte-induced scattering of conduction electrons in the nanowires. An ion-induced field effect can be excluded based on gated conductance measurements of the nanowire films.  相似文献   

2.
Thin films (4-150 nm) of metallic LiMo3Se3 nanowires respond to chemical vapors of molecular analytes (2-400 mTorr) with rapid (<20 s) and mostly reversible changes of their resistance (DeltaR/R0 approximately 1-70%). Measurements show that the effect is concentration-dependent, and that it depends on the molecular properties of the analytes.  相似文献   

3.
The properties of reactively sputtered ZnO thin films used as chemical sensors are investigated in N2, synthetic air, 10 ppm of NO2, 30 ppm of CO and in the presence of humidity. The behaviour is correlated to a grain boundary determined conduction model. Using the resistance ratio of twin sensors, one of which is coated with a thin Au catalytic layer, allows the sensor response to CO to be increased and the output signal to be stabilized against sensor drift; the response time is also reduced.  相似文献   

4.
《中国化学快报》2023,34(8):107981
Recently, two-dimension (2D) materials have fueled considerable interest in the field of gas sensing to cope urgent demands at specific scenarios. Unfortunately, the susceptibility to ambient humidity, and/or fragile operation stability always frustrate their further practicability. To overcome these drawbacks, we proposed one novel flexible gas sensor based on bismuth selenide (Bi2Se3) nanoplates for sensitive NO2 detection at room temperature. The as-prepared Bi2Se3 sensor exhibited favorable sensing performance, including remarkable NO2 selectivity, high response of 120% and fast response time of 81 s toward 5 ppm NO2, an ultralow detection limit of 100 ppb, and nice stability. Besides, the excellent humidity tolerance and mechanical flexibility endowed Bi2Se3 sensors with admirable reliability under harsh working conditions. The first-principles calculation further revealed the insights of extraordinary NO2 selectivity and the underlying gas-sensing mechanism.  相似文献   

5.
This review provides a general introduction to organic field-effect transistors and their application as chemical sensors. Thin film transistor device performance is greatly affected by the molecular structure and morphology of the organic semiconductor layer. Various methods for organic semiconductor deposition are surveyed. Recent progress in the fabrication of organic thin film transistor sensors as well as the correlation between morphology and analyte response is discussed.  相似文献   

6.
Lipophilic borate salts are frequently used as anionic additives in potentiometric and optical cation-selective sensors based on solvent polymeric membranes. The lifetime of such membranes may be limited owing to chemical decomposition and leaching of the components. Borate salts, in particular, are decomposed in the presence of acids in the membrane. Adequately substituted borate salts and sulphonic acids, such as sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, sodium tetrakis[3,5-bis(2-methoxyhexafluoro-2-propyl)phenyl]borate and dinonylnaphthalenesulphonic acid (DNSS), are shown to be sufficiently stable as membrane additives. Furthermore, lipoholic mobile or immoblizied sulphonic acids [DNNS or poly(2-acrylamido-2-methyl-1-propanesulphonic acid-co-styrene), respectively were also tested as anionic additives. Their influence on the selectivity behaviour of the sensor is attributed to their strong association with positively charged species in the membrane phase. It may be kept small by choosing ionophores that from stable complexes with the analyte.  相似文献   

7.
Graphene oxide (GO) nanosheets and polyoxometalate such as H(3)PW(12)O(40) (PTA) are prepared into a multilayer film via a layer-by-layer inkjet printing method. The GO/PTA composite thin film shows linear, uniform and regular layer-by-layer growth. Under UV-irradiation, a photoreduction reaction takes place in the film which converts GO to reduced GO (rGO) due to the photoreduction activity of polyoxometalate clusters. According to the cyclic voltammograms measurement, the rGO/PTA composite film displays good electrocatalytic activity for the oxidation of dopamine (DA). The oxidation peak current (I(pa)) increases gradually with increasing the dopamine concentration, which may be used in electrochemical biosensors.  相似文献   

8.
针对深水钻井中水基钻井液易形成天然气水合物从而导致钻井作业无法正常进行的问题,利用自行设计研制的气体水合物反应装置,模拟深水钻井温度压力条件,对水基钻井液添加剂进行了天然气水合物形成的实验研究。分析了各实验体系形成水合物的过冷度。以过冷度为评价指标,评价了各种钻井液添加剂在深水钻井水合物形成过程中的作用。结果表明,在钻井液使用的加量范围内,阳离子聚丙烯酰胺CPAM、两性离子聚合物FA367等对天然气水合物的形成有抑制作用,且随着加量的增加抑制作用增强;磺甲基丹宁SMT、木质素磺酸盐FCLS对天然气水合物的形成有微弱的促进作用,但影响不大。聚合物添加剂的离子类型对天然气水合物的形成影响不大。  相似文献   

9.
10.
In this work, carbon electrodes modified with aminophenols were developed for the production of pesticides biosensors based on acetylcholinesterase. The polymers were potentiodynamically deposited on a graphite electrode surface by the oxidation of monomers, 2-aminophenol, 3-aminophenol and 4-aminophenol. The electrochemical behaviour and surface analysis of the electrodes modified by polyaminophenols non-immobilized and immobilized on acetylcholinesterase were studied by cyclic voltammetry, electrochemical impedance spectroscopy and atomic force microscopy. Roughness values obtained for graphite electrodes modified with poly(4-aminophenol) and poly(4-aminophenol)/acetylcholinesterase were 174 and 86 nm, respectively. The acetylcholinesterase enzyme was immobilized on a graphite and a graphite modified with poly(4-aminophenol), and these electrodes were coupled in the flow system. Potentiometric response due to hydrogen ions generated by an enzymatic system in the presence of acetylcholine chloride substrate was evaluated. The results showed that the graphite/poly(4-aminhophenol) sensor presents high sensitivity to hydrogen ions when compared with other graphite/polyaminophenols sensors. The biosensor coupled in a continuous flow system was employed for the detection of dichlorvos. The detection and quantification limits were 0.8 and 2.4 μmol L−1 dichlorvos, respectively. This sensor reveals an efficient and promising material for biomolecules immobilization.  相似文献   

11.
12.
13.
The amorphous Sb2Se3 film with a thickness ~0.9 µm was prepared by thermal evaporation and its composition was confirmed using an energy-dispersive X-ray analysis. The amorphous state was checked by an X-ray diffraction analysis. The optical gap E g opt was determined to be 1.32 eV. The glass transition temperature could not be found by either a differential scanning calorimetry or a thermomechanical analysis. The film was crystallized and characterized using the quasi-isothermal method. The temperature dependence of the isobaric heat capacity was raised monotonously and no drop over the course of the crystallization was observed. The temperature-modulated thermomechanical analysis determined a temperature T = 133 °C which can be assumed to be the temperature of the structural reorganization beginning. Raman spectra of amorphous Sb2Se3 revealed that the vibrations of both the amorphous and crystalline phase are close to one other. Raman scattering revealed that both the short and the medium-range order of amorphous and crystalline phases are similar.  相似文献   

14.
A major goal of intercalation chemistry is to intercalate high densities of guest species without disrupting the host lattice. Many intercalant concentrations, however, are limited by the charge of the guest species. Here we have developed a general solution-based chemical method for intercalating extraordinarily high densities of zero-valent copper metal into layered Bi(2)Se(3) nanoribbons. Up to 60 atom % copper (Cu(7.5)Bi(2)Se(3)) can be intercalated with no disruption to the host lattice using a solution disproportionation redox reaction.  相似文献   

15.
吖啶具有刚性平面结构,荧光性能十分优越,因此可以用于荧光化学传感器的合成.本文作者综述了近几年来吖啶类荧光化学传感器的研究进展;介绍了吖啶类荧光化学传感器对阳离子、阴离子和手性化合物的识别性能,并展望了此类传感器的理论和应用前景.  相似文献   

16.
Biological and chemical sensors based on graphene materials   总被引:2,自引:0,他引:2  
Owing to their extraordinary electrical, chemical, optical, mechanical and structural properties, graphene and its derivatives have stimulated exploding interests in their sensor applications ever since the first isolation of free-standing graphene sheets in year 2004. This article critically and comprehensively reviews the emerging graphene-based electrochemical sensors, electronic sensors, optical sensors, and nanopore sensors for biological or chemical detection. We emphasize on the underlying detection (or signal transduction) mechanisms, the unique roles and advantages of the used graphene materials. Properties and preparations of different graphene materials, their functionalizations are also comparatively discussed in view of sensor development. Finally, the perspective and current challenges of graphene sensors are outlined (312 references).  相似文献   

17.
The properties of solvent polymeric membrane sensors based on 5,10,15,20-tetraphenylporphyrin (TPP) and phthalocyanine (PHC) have been investigated. The sensitivity and selectivity of sensors towards wide range of mono- and di-valent cations have been measured. The selectivity towards the transition metal ions for TPP-based sensor does not correspond to the cation lipophilicity sequence. The dependence of response on pH was studied. The cross-sensitivity parameters, including average response slope, signal-to-noise ratio and “non-selectivity” factor for all sensors were calculated and compared. The influence of plasticizer and ionic additive on the response of sensors was characterized using principal component analysis (PCA).  相似文献   

18.
The effect of mM concentrations of K3[Fe(CN)6], Fe(III), Mo(VI), KSCN and KMnO4 on the generation of BiH3 by the reaction of 0.2–10 μg ml−1 Bi(III) with 0.2 M tetrahydroborate(III) at 1 M acidity (HCl or HNO3) was investigated. Chemical vapour generation (CVG) of BiH3 was investigated by atomic absorption spectrometry using a continuous flow reaction system (CF–CVG–AAS) and different mixing sequences and reagent reaction times. Gas chromatography–mass spectrometry (GC–MS) was employed in batch generation experiments with NaBD4. In the absence of additives, the formation of Bi0 at high concentrations of Bi(III) caused rollover of calibration curves and limited the linear range to less than 1 μg ml−1 Bi(III). In the presence of additives, the formation of Bi0 was not observed and the linear range was increased to 5 μg ml−1 of Bi(III) while rollover was completely removed. GC–MS experiments indicated that the presence of additives did not affect the direct transfer of H from boron to bismuth. Experiments with CF–CVG–AAS and different mixing sequences and reagent reaction times suggest that additives act by preventing the formation of Bi0 through the formation of reaction intermediates which evolve towards the formation of BiH3 at elevated Bi(III)/NaBH4 ratios.   相似文献   

19.
Sol-gel porous materials with tailored or nanostructured cavities have been increasingly used as nanoreactors for the enhancement of reactions between entrapped chemical reactants. The domains of applications issued from these designs and engineering are extremely wide. This tutorial review will focus on one of these domains, in particular on optical chemical sensors, which are the subject of extensive research and development in environment, industry and health.  相似文献   

20.
Functional thin layers based on polypyrrole were used in electrochemical sensors as mixed conducting interfaces between ion‐selective membranes and the wiring. In particular, new types of ion‐selective electrodes for potentiometric measurement of pH value and concentration of sulfate ions in solutions were developed. The resulting electrodes do not need any inner liquid junction. First determinations of the sensor parameters sensitivity, selectivity and long term stability indicate a good performance of the prepared sensors. The results imply that interfaces, containing polypyrrole, could be an interesting basis for the construction of a new type of all‐solid‐state ion‐selective electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号