首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The lantibiotic haloduracin consists of two posttranslationally processed peptides, Halalpha and Halbeta, which act in synergy to provide bactericidal activity. An in vitro haloduracin production system was used to examine the biological impact of disrupting individual thioether rings in each peptide. Surprisingly, the Halalpha B ring, which contains a highly conserved CTLTXEC motif, was expendable. This motif has been proposed to interact with haloduracin's predicted target, lipid II. Exchange of the glutamate residue in this motif for alanine or glutamine completely abolished antibacterial activity. This study also established that Halalpha-Ser26 and Halbeta-Ser22 escape dehydration, requiring revision of the Halbeta structure previously proposed. Extracellular proteases secreted by the producer strain can remove the leader peptide, and the Halalpha cystine that is dispensable for bioactivity protects Halalpha from further proteolytic degradation.  相似文献   

2.
Lantibiotics are ribosomally synthesized and post-translationally modified peptides (RiPPs) characterized by the presence of lanthionine or methyllanthionine rings and their antimicrobial activity. Cacaoidin, a novel glycosylated lantibiotic, was isolated from a Streptomyces cacaoi strain and fully characterized by NMR, mass spectrometry, chemical derivatization approaches and genome analysis. The new molecule combines outstanding structural features, such as a high number of d -amino acids, an uncommon glycosylated tyrosine residue and an unprecedented N,N-dimethyl lanthionine. This latter feature places cacaoidin within a new RiPP family located between lanthipeptides and linaridins, here termed lanthidins. Cacaoidin displayed potent antibacterial activity against Gram-positive pathogens including Clostridium difficile. The biosynthetic gene cluster showed low homology with those of other known lanthipeptides or linaridins, suggesting a new RiPP biosynthetic pathway.  相似文献   

3.
Lantibiotics are ribosomally synthesized and post‐translationally modified peptides (RiPPs) characterized by the presence of lanthionine or methyllanthionine rings and their antimicrobial activity. Cacaoidin, a novel glycosylated lantibiotic, was isolated from a Streptomyces cacaoi strain and fully characterized by NMR, mass spectrometry, chemical derivatization approaches and genome analysis. The new molecule combines outstanding structural features, such as a high number of d ‐amino acids, an uncommon glycosylated tyrosine residue and an unprecedented N,N‐dimethyl lanthionine. This latter feature places cacaoidin within a new RiPP family located between lanthipeptides and linaridins, here termed lanthidins. Cacaoidin displayed potent antibacterial activity against Gram‐positive pathogens including Clostridium difficile. The biosynthetic gene cluster showed low homology with those of other known lanthipeptides or linaridins, suggesting a new RiPP biosynthetic pathway.  相似文献   

4.
Lacticin 3147 is a lantibiotic with seven lanthionine bridges across its two component peptides, Ltnα and Ltnβ. Although it has been proposed that the eponymous lanthionine and (β-methyl)lanthionine (Lan and meLan) bridges present in lantibiotics make an important contribution to protecting the peptides from thermal or proteolytic degradation, few studies have investigated this link. We have generated a bank of bioengineered derivatives of lacticin 3147, in which selected bridges were removed or converted between Lan and meLan, which were exposed to high temperature or proteolytic enzymes. Although switching Lan and meLan bridges has variable consequences, it was consistently observed that an intact N-terminal lanthionine bridge (Ring A) confers Ltnα with enhanced resistance to thermal and proteolytic degradation.  相似文献   

5.
Lantibiotics are peptide antimicrobials containing the thioether-bridged amino acids lanthionine (Lan) and methyllanthionine (MeLan) and often the dehydrated residues dehydroalanine (Dha) and dehydrobutyrine (Dhb). While biologically advantageous, the incorporation of these residues into peptides is synthetically daunting, and their production in vivo is limited to peptides containing proteinogenic amino acids. The lacticin 481 synthetase LctM offers versatile control over the installation of dehydro amino acids and thioether rings into peptides. In vitro processing of semisynthetic substrates unrelated to the prelacticin 481 peptide demonstrated the broad substrate tolerance of LctM. Furthermore, a chemoenzymatic strategy was employed to generate novel thioether linkages by cyclization of peptidic substrates containing the nonproteinogenic cysteine analogs homocysteine and beta-homocysteine. These findings are promising with respect to the utility of LctM toward preparation of conformationally constrained peptide therapeutics.  相似文献   

6.
[structure: see text] Lanthionine, a thioether analogue of cystine, is a key component of the lantibiotics, a family of modified peptides bearing multiple thioether bridges resulting from posttranslational modifications between side chains. It is also used as a conformational constraint in medicinally active peptides. We have explored two synthetic routes to give lanthionine, orthogonally protected with Alloc/allyl and Fmoc groups. One route utilized a carbamate-protected iodoalanine that yielded a mixture of diastereoisomers, and one utilized a trityl-protected iodoalanine, formed via a Mitsunobu reaction, that gave the single desired lanthionine, in complete regio- and diastereoselectivity. We then used this orthogonally protected lanthionine in the solid-phase synthesis of an analogue of a fragment of nisin containing its ring C. The chemoselective deprotection of the allyl and Alloc groups of the incorporated lanthionine unit was followed by regio- and stereoselective cyclization on resin to give the desired lanthionine-bridged peptide.  相似文献   

7.
Synthetic approaches to the lantibiotics, a family of thioether-bridged antimicrobial peptides, require flexible synthetic routes to a variety of orthogonally protected derivatives of lanthionine 1. The most direct approaches to lanthionine involve the reaction of cysteine with an alanyl beta-cation equivalent. Several possibilities exist for the alanyl beta-cation equivalent, including direct activation of serine under Mitsunobu conditions: however, the low reactivity of sulfur nucleophiles in the Mitsunobu reaction has previously precluded its use in the synthesis of the lantibiotics. We report here a new approach to the synthesis of protected lanthionine, using a novel variant of the Mitsunobu reaction in which catalytic zinc tartrate is used to enhance the nucleophilicity of the thiol. In the course of these studies, we have also demonstrated that the synthesis of lanthionine from trityl-protected beta-iodoalanines is prone to rearrangement, via an aziridine, to give predominantly trityl-protected alpha-iodo-beta-alanines, and hence norlanthionines, as the major products.  相似文献   

8.
《Tetrahedron letters》1988,29(7):795-798
Total synthesis of a lanthionine peptide nisin was successfully achieved for the first time by application of new methods for preparations of dehydroalanine and lanthionine moieties, resulting in a confirmation of the proposed structure.  相似文献   

9.
Protected α-alkyl lanthionine derivatives were synthesized in five steps starting from a known phenyloxazoline precursor. This approach involved the synthesis of a family of substituted cyclic sulfamidates and their regioselective opening by nucleophilic attack with a protected cysteine. This efficient multistep strategy affords various α-alkylated lanthionine derivatives in high yields.  相似文献   

10.
Lantibiotics are antimicrobial peptides produced by bacteria. Some are employed for food preservation, whereas others have therapeutic potential due to their activity against organisms resistant to current antibiotics. They are ribosomally synthesized and posttranslationally modified by dehydration of serine and threonine residues followed by attack of thiols of cysteines to form monosulfide lanthionine and methyllanthionine rings, respectively. Chemical synthesis of peptide analogues is a powerful method to verify stereochemistry and access structure-activity relationships. However, solid supported synthesis of lantibiotics has been difficult due to problems in generating lanthionines and methyllanthionines with orthogonal protection and good stereochemical control. We report the solid-phase syntheses of both peptides of a two-component lantibiotic, lacticin 3147. Both successive and interlocking ring systems were synthesized on-resin, thereby providing a general methodology for this family of natural products.  相似文献   

11.
Smith ND  Goodman M 《Organic letters》2003,5(7):1035-1037
[reaction: see text] We report here the enantioselective synthesis of Boc-alpha-methyl-d-cysteine(PMB)-OH and lanthionine building blocks through the regioselective ring opening of key intermediate Boc-alpha-methyl-d-serine-beta-lactone.  相似文献   

12.
Lantibiotic peptides are potent antimicrobial compounds produced by Gram-positive bacteria. They can be used in food preservation, and some also show potential for clinical applications. Unfortunately, some of these peptides can be susceptible to inactivation by oxidation of the sulfur-containing amino acid lanthionine, limiting their use. Here we describe the synthesis and testing of diaminopimelate analogues of the lantibiotic lactocin S. These analogues were designed to improve the oxidative stability of the peptide by replacing the sulfur in lanthionine with a methylene unit. Lanthionine was systematically replaced with diaminopimelate during solid-phase peptide synthesis to produce several analogues. One analogue, A-DAP lactocin S, was found to retain full biological activity in addition to displaying increased stability. This is the first time a synthetic lanthionine ring analogue of a lantibiotic has retained natural activity levels. This methodology is potentially very promising for use in producing more stable, medically relevant lantibiotics.  相似文献   

13.
The asymmetric sulfa-Michael additions of appropriately protected L- and D-cysteine derivatives to new chiral dehydroamino acid derivatives have been developed as key steps in the synthesis of biologically important cysteine derivatives, such as lanthionine (Lan) and β-methyllanthionine (MeLan), which are unusual bis-α-amino acids found in the emerging lantibiotics such as nisin.  相似文献   

14.
Aziridine derivatives involved in nucleophilic ring-opening reactions have attracted great interest, since they allow the preparation of biologically active molecules. A chemoselective and mild procedure to convert a peptide cysteine residue into lanthionine via S-alkylation on aziridine substrates is presented in this paper. The procedure relies on a post-synthetic protocol promoted by molecular sieves to prepare lanthionine-containing peptides and is assisted by microwave irradiation. In addition, it represents a valuable alternative to the stepwise approach, in which the lanthionine precursor is incorporated into peptides as a building block.  相似文献   

15.
[reaction: see text] Lantibiotics are a class of lanthionine (and/or beta-methyllanthionine)-containing peptides with antibioitic activity against Gram-positive bacteria. As part of our research effort directed toward the synthesis and mechanistic study of the lantibiotic peptide mersacidin (1), we report stereoselective syntheses of orthogonally protected beta-methylcysteine (beta-MeCys) and beta-methyllanthionine (beta-MeLan), two key nonnatural amino acid components of the mersacidin architecture.  相似文献   

16.
The coordination chemistry of lanthionine (LANH2) and cystathionine (CSTH2) dipeptides, which respectively consist of two cysteines and one cysteine and one homocysteine linked by a thioether bridge, is almost unstudied. Recently for fac-[99mTc(CO)3(LAN)]- isomers, the first small 99mTc(CO)3 agents evaluated in humans were found to give excellent renal images and to have a high specificity for renal excretion. Herein we report the synthesis and characterization of Re complexes useful for interpreting the nature of tracer 99mTc radiopharmaceuticals. Treatment of [Re(CO)3(H2O)3]OTf with commercially available LANH2 (a mixture of meso (d,l) and chiral (dd,ll) isomers) gave three HPLC peaks, 1A, 1B, and 1C, but treatment with CSTH2 (l,l isomer) gave one major product, Re(CO)3(CSTH) (2). Crystalline Re(CO)3(LANH) products were best obtained with synthetic LANH2, richer in meso or chiral isomers. X-ray crystallography showed that these dipeptides coordinate as tridentate N2S-bound ligands with two dangling carboxyls. The LANH ligand is meso in 1A and 1C and chiral in 1B. While 1A (kinetically favored) is stable at ambient temperature for days, it converted into 1C (thermodynamically favored) at 100 degrees C; after 6 h, equilibrium was reached at a 1A:1C ratio of 1:2 at pH 8. The structures provide a rationale for this behavior and for the fact that 1A and 1C have simple NMR spectra. This simplicity results from fluxional interchange between an enantiomer with both chelate rings having the same delta pucker and an enantiomer with both chelate rings having the same lambda pucker. Agents with the [99mTc(CO)3]+ core and N2S ligands show promise of becoming an important class of 99mTc radiopharmaceuticals. The chemistry of Re analogues with these ligands, such as the LAN2- complexes reported here, provides a useful background for designing new small agents and also tagged large agents because two uncoordinated carboxyl groups are available for conjugation with biological molecules such as proteins.  相似文献   

17.
Regio- and stereoselective aziridine ring opening with oxygen nucleophiles derived from serine and threonine provides a route to stereochemically pure 4-oxa-2,6-diaminopimelic acid (oxa-DAP) and its methyl-substituted derivatives. Oxa-DAP is a substrate of DAP epimerase, a key enzyme for biosynthesis of l-lysine and formation of peptidoglycan precursors. Orthogonally protected analogues of lanthionine and beta-methyllanthionine wherein oxygen replaces sulfur were prepared that could be used for solid-supported peptide synthesis to make oxa derivatives of lantibiotics.  相似文献   

18.
In this report we present a method to identify functional artificial lantipeptides. In vitro translation coupled with an enzyme-free protocol for posttranslational modification allows preparation of more than 10(11) different lanthionine containing peptides. This diversity can be searched for functional molecules using mRNA-lantipeptide display. We validated this approach by isolating binders toward Sortase A, a transamidase which is required for virulence of Staphylococcus aureus. The interaction of selected lantipeptides with Sortase A is highly dependent on the presence of a (2S,6R)-lanthionine in the peptide and an active conformation of the protein.  相似文献   

19.
《Tetrahedron letters》1988,29(37):4771-4772
The structure of lanthiopeptin, a new lanthionine peptide effective against Herpes virus, was newly determined. It has a unique tetracyclic sequence which is very similar to but different from the proposed structure for Ro 09-0198. However, Ro 09-0198 was found to be quite the same compound as lanthiopeptin in all respects.  相似文献   

20.
Peptide disulfides are unstable under alkaline conditions, resulting in the formation of products containing lanthionine and polysulfide linkages. Electrospray ionization mass spectrometry has been used to characterize major species obtained when cyclic and acyclic peptide disulfides are exposed to alkaline media. Studies on a model cyclic peptide disulfide () and an acyclic peptide, oxidized glutathione, bis (γGlu - Cys - Gly - COOH), are described. Disulfide cleavage reactions are initiated by the abstraction of CαH or CβH protons of Cys residues, with subsequent elimination of H2S or H2S2. The buildup of reactive thiol species which act on intermediates containing dehydroalanine residues, rationalizes the formation of lanthionine and polysulfide products. In the case of the cyclic peptide disulfide, the formation of cyclic products is facilitated by the intramolecular nature of the Michael addition reaction of thiols to the dehydroalanine residue. Mass spectral evidence for the intermediate species is presented by using alkylation of thiol groups as a trapping method. Mass spectral fragmentation in the negative ion mode of the peptides derived from trisulfides and tetrasulfides results in elimination of S2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号