首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An high performance liquid chromatography (HPLC) method for the enantioselective determination of donepezil (DPZ), 5-O-desmethyl donepezil (5-ODD), and 6-O-desmethyl donepezil (6-ODD) in Czapek culture medium to be applied to biotransformation studies with fungi is described for the first time. The HPLC analysis was carried out using a Chiralpak AD-H column with hexane/ethanol/methanol (75:20:5, v/v/v) plus 0.3 % triethylamine as mobile phase and UV detection at 270 nm. Sample preparation was carried out by liquid-liquid extraction using ethyl acetate as extractor solvent. The method was linear over the concentration range of 100-10,000 ng mL(-1) for each enantiomer of DPZ (r ≥ 0.9985) and of 100-5,000 ng mL(-1) for each enantiomer of 5-ODD (r ≥ 0.9977) and 6-ODD (r ≥ 0.9951). Within-day and between-day precision and accuracy evaluated by relative standard deviations and relative errors, respectively, were lower than 15 % for all analytes. The validated method was used to assess DPZ biotransformation by the fungi Beauveria bassiana American Type Culture Collection (ATCC) 7159 and Cunninghamella elegans ATCC 10028B. Using the fungus B. bassiana ATCC 7159, a predominant formation of (R)-5-ODD was observed while for the fungus C. elegans ATCC 10028B, DPZ was biotransformed to (R)-6-ODD with an enantiomeric excess of 100 %.  相似文献   

2.
A simple, sensitive and rapid liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method was developed and validated for simultaneous quantification of olanzapine, clozapine, ziprasidone, haloperidol, risperidone, and its active metabolite 9-hydroxyrisperidone, in rat plasma using midazolam as internal standard (IS). The analytes were extracted from rat plasma using a single step liquid-liquid extraction technique. The compounds were separated on a Waters Atlantis dC-18 (30 mm x 2.1 mm i.d., 3 microm) column using a mobile phase of acetonitrile/5 mM ammonium formate (pH 6.1 adjusted with formic acid) with gradient elution. All of the analytes were detected in positive ion mode using multiple reaction monitoring (MRM). The method was validated and the specificity, linearity, lower limit of quantitation (LLOQ), precision, accuracy, recoveries and stability were determined. LLOQ was 0.1 ng/mL and correlation coefficient (R(2)) values for the linear range of 0.1-100 ng/mL were 0.997 or greater for all the analytes. The intra-day and inter-day precision and accuracy were better than 8.05%. The relative and absolute recovery was above 77% and matrix effects were low for all the analytes except for ziprasidone. This validated method has been successfully used to quantify the plasma concentration of the analytes after chronic treatment with antipsychotic drugs.  相似文献   

3.
A bioanalytical method was developed and validated to estimate donepezil, 6‐desmethyl donepezil and 5‐desmethyl donepezil simultaneously in human plasma using galantamine as an internal standard (IS). The chromatographic separation was achieved on a reverse‐phase XTerra RP (150 × 4.6 mm, 5 µm) column without affecting recovery (mean recovery > 60% with CV < 10%) for all analytes. ESI‐MS/MS multiple reaction monitoring in positive polarity was used to detect mass pairs for donepezil (m/z 380.3 → 91.3), 6‐desmethyl donepezil (m/z 366.4 → 91.3), 5‐desmethyl donepezil (m/z 366.4 → 91.3) and galantamine m/z (288.1 → 213.0). The linearity was established over a dynamic range of 0.339–51.870, 0.100–15.380 and 0.103–15.763 ng/mL for donepezil, 6‐desmethyl donepezil and 5‐desmethyl donepezil, respectively. The current method shows that minimal conversion of labile metabolites to parent donepezil in plasma as stability was successfully achieved for 211 days at ?15 °C storage temperature. The method was successfully applied to a clinical study after administration of 10 mg donepezil tablets to healthy male Indian volunteers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A simple, specific and sensitive LC-MS/MS assay for simultaneous determination of simvastatin (SV) and its active beta-hydroxy acid metabolite, simvastatin acid (SVA) in human plasma was developed using a statin analog as internal standard (IS). The method was validated over a dynamic linear range of 0.20-100.00 ng/mL for SV and 0.10-50.00 ng/mL for SVA with correlation coefficient r > or = 0.9987 and 0.9989, respectively. The analytes and IS were extracted from 500 microL aliquots of human plasma via liquid-liquid extraction using methyl tert-butyl ether and separated through an Aquasil C18 column (100 mm x 2.1 mm, 5 microm). Detection of analytes and IS was done by MS/MS with a turbo ion spray interface operating in positive ion and selective reaction monitoring acquisition mode. The total chromatographic run time was 3.0 min. Flash freezing of the aqueous phase was an added advantage during liquid-liquid extraction, which considerably reduced time and labour. The method was extensively validated for its accuracy, precision, recovery, stability studies and matrix effect. The method was successfully used for bioequivalence study of 40 mg SV tablet formulation in 12 human subjects under fasting condition.  相似文献   

5.
A sensitive microElution solid-phase extraction (SPE) liquid chromatography/tandem mass spectrometry (LC/MS/MS) method has been developed and validated for the determination of M+4 stable isotope labeled cortisone and cortisol in human plasma. In this method, M+4 cortisone and M+4 cortisol were extracted from 0.3 mL of human plasma samples using a Waters Oasis HLB 96-well microElution SPE plate using 70 microL methanol as the elution solvent, and chromatographed on a Waters Symmetry C18 column (4.6 x 50 mm, 3.5 microm). M+9 cortisone and M+9 cortisol were used as the internal standards. A PE Sciex API 4000 tandem mass spectrometer interfaced with the liquid chromatograph via a turboionspray source was used for mass analysis and detection. The selected reaction monitoring (SRM) of precursor --> product ion transitions were monitored at m/z 365.2 [M+H](+) --> 167.0 and at m/z 367.3 [M+H](+) --> 125.1 for M+4 cortisone and M+4 cortisol, respectively. The lower limit of quantitation was 0.1 ng mL(-1) and the linear calibration range was from 0.1 to 100 ng mL(-1) for both analytes. This method demonstrated to be very reproducible and reliable.  相似文献   

6.
A selective, rapid and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is described for assay of donepezil in human plasma using escitalopram as an internal standard. Chromatographic separation was achieved on a Betabasic-C(8), 5 microm, 100 x 4.6 mm column using methanol:water:formic acid (90:9.97:0.03, v/v/v) as mobile phase. Detection of donepezil and internal standard was achieved by ESI MS/MS in positive ion mode using 380.20/91.10 and 325.13/262.00 transitions, respectively. The linearity over the concentration range of 0.15-50 ng/mL for donepezil was obtained and the lower limit of quantification was 0.15 ng/mL. For each level of quality control samples, inter-day and intra-day precisions (RSD) were < or =8.92 and 10.35% and accuracy (%RE) were < or =7.33% and 9.33%, respectively. The recovery was more than 88.50% for both donepezil and internal standard by solid-phase extraction, eliminating evaporation and reconstitution steps.  相似文献   

7.
A liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and validated for the determination of donepezil in human plasma samples. Diphenhydramine was used as the internal standard. The collision-induced transition m/z 380 --> 91 was used to analyze donepezil in selected reaction monitoring mode. The signal intensity of the m/z 380 --> 91 transition was found to relate linearly with donepezil concentrations in plasma from 0.1-20.0 ng/mL. The lower limit of quantification of the LC/MS/MS method was 0.1 ng/mL. The intra- and inter-day precisions were below 10.2% and the accuracy was between -2.3% and +2.8%. The validated LC/MS/MS method was applied to a pharmacokinetic study in which healthy Chinese volunteers each received a single oral dose of 5 mg donepezil hydrochloride. The non-compartmental pharmacokinetic model was used to fit the donepezil plasma concentration-time curve. Maximum plasma concentration was 12.3 +/- 2.73 ng/mL which occurred at 3.50 +/- 1.61 h post-dosing. The apparent elimination half-life and the area under the curve were, respectively, 60.86 +/- 12.05 h and 609.3 +/- 122.2 ng . h/mL. LC/MS/MS is a rapid, sensitive and specific method for determining donepezil in human plasma samples.  相似文献   

8.
A new method for simultaneous determination of amiloride and hydrochlorothiazide by liquid chromatography/electrospray tandem mass spectrometry (LC/MS/MS) operated in positive and negative ionization switching mode was developed and validated. Protein precipitation with acetonitrile was selected for sample preparation. The analytes were separated on a Phenomenex Curosil-PFP (250x4.6 mm, 5 microm) column by a gradient elution with a mobile phase consisting of 0.15% formic acid solution containing 0.23% ammonium acetate and methanol pumped at a flow rate of 1.0 mL.min(-1). Rizatriptan was used as the internal standard (IS) for quantification. The determination was carried out on a Waters Quattro-micro triple-quadrupole mass spectrometer operated in multiple reaction monitoring (MRM) mode using the following transitions monitored simultaneously: positive m/z 230-->171 for amiloride, m/z 270-->158 for rizatriptan, and negative m/z 296-->205 for hydrochlorothiazide. The lower limits of quantification (LLOQs) were 0.1 and 1.0 ng.mL(-1) for amiloride and hydrochlorothiazide, respectively, which were lower than other published methods by using ultraviolet (UV), fluorimetric or mass spectrometric detection. The intra- and inter-day precision and accuracy were studied at three different concentration levels and were always better than 15% (n=5). This simple and robust LC/MS/MS method was successfully applied to the pharmacokinetic study of compound amiloride and hydrochlorothiazide tablets in healthy male Chinese volunteers.  相似文献   

9.
An ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the simultaneous determination of carvedilol and its pharmacologically active metabolite 4′‐hydroxyphenyl carvedilol in human plasma using their deuterated internal standards (IS). Samples were prepared by solid‐phase extraction using 100 μL human plasma. Chromatographic separation of analytes was achieved on UPLC C18 (50 × 2.1 mm, 1.7 µm) column using acetonitrile‐4.0 mm ammonium formate, pH 3.0 adjusted with 0.1% formic acid (78:22, v/v) as the mobile phase. The multiple reaction monitoring transitions for both the analytes and IS were monitored in the positive electrospray ionization mode. The method was validated over a concentration range of 0.05–50 ng/mL for carvedilol and 0.01‐10 ng/mL for 4′‐hydroxyphenyl carvedilol. Intra‐ and inter‐batch precision (% CV) and accuracy for the analytes varied from 0.74 to 3.88 and 96.4 to 103.3% respectively. Matrix effect was assessed by post‐column analyte infusion and by calculation of precision values (coefficient of variation) in the measurement of the slope of calibration curves from eight plasma batches. The assay recovery was within 94–99% for both the analytes and IS. The method was successfully applied to support a bioequivalence study of 12.5 mg carvedilol tablets in 34 healthy subjects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A rapid, sensitive and selective method for the simultaneous determination of bromadiolone, flocoumafen and brodifacoum in whole blood using warfarin as internal standard (IS) by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC/ESI-MS) has been developed and validated. The target compounds were extracted from the whole blood with ethyl acetate and separated on an XDB C18 column (150 mm x 2.1 mm i.d. x 5 microm) by using a mobile phase consisting of 0.2% acetic acid/methanol (12/88, v/v) at a constant flow rate of 0.50 mL/min. The analytes were detected using negative ESI-MS in the selected ion monitoring (SIM) mode. The molecular ions [M-H]- of m/z 527, 541,523 and 307 were selected for the quantification for bromadiolone, flocoumafen, brodifacoum and the IS, respectively. The calibration curves were linear (r2 > 0.995) in the concentration range of 0.50-100.00 ng/mL. The method showed a satisfactory sensitivity (0.05-0.5 ng/mL using 200 microL blood), precision (RSD < 11.9%), accuracy (recovery: 82.0-96.1%) and selectivity. This method was successfully applied to the determination of the analytes for the diagnoses of poisoned human beings and animals.  相似文献   

11.
A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method has been developed and validated for simultaneous quantification of docetaxel and ketoconazole in rat plasma with paclitaxel as internal standard (IS). The analytes were extracted from rat plasma by using a liquid-liquid extraction technique with ethyl acetate and the LC separation was performed on a Cosmosil-C(18) analytical column (150 mm x 2.0 mm i.d., Nacalai Tesque Inc., Japan). The extracted samples were analyzed with LC/MS/MS, operating in selected reaction monitoring (SRM) mode. The SRM transitions of precursor ions to product ions were 830.3-->549.1 (m/z) for docetaxel, 531.2-->489.3 (m/z) for ketoconazole, and 876.7-->307.9 (m/z) for the IS. The calibration curves were linear over the range of 2-500 ng/mL for docetaxel and 50-20 000 ng/mL for ketoconazole, with coefficients of correlation above 0.999. The limits of quantification for docetaxel and ketoconazole were both 2 ng/mL. The limit of detection for each analyte was 1 ng/mL. The intra- and inter-day precision (CV) of analysis were within 7%, and the accuracy ranged from 95 to 110%. The overall recoveries for docetaxel and ketoconazole were about 89.0% and 91.1%, respectively. The total analysis time was only 9.0 min. This quantitation method was successfully applied to the simultaneous determination of docetaxel and ketoconazole in rat plasma and some potential interaction was found in the current coadministration pharmacokinetic study. This established method was also utilized in the in vitro and in vivo drug-drug interaction study of docetaxel and ketoconazole (to be published).  相似文献   

12.
A simple and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for determining domperidone in human plasma. The analyte and internal standard (IS; mosapride) were isolated from plasma samples by protein precipitation with methanol (containing 0.1% formic acid). The chromatographic separation was performed on an Xterra MS C(18) Column (2.1 x 150 mm, 5.0 microm) with a gradient programme mobile phase consisting of 0.1% formic acid and acetonitrile at a flow rate of 0.30 mL/min. The total run time was 4.0 min. The analyses were carried out by multiple reaction monitoring using the parent-to-daughter combinations m/z 426 --> 175 and m/z 422 --> 198 (IS). The areas of peaks from the analyte and IS were used for quantification of domperidone. The method was validated according to the FDA guidelines on bioanalytical method validation. Validation results indicated that the lower limit of quantification was 0.2 ng/mL, and the assay exhibited a linear range of 0.2-60.0 ng/mL and gave a correlation coefficient (r(2)) of 0.999 or better. Quality control samples (0.4, 0.8, 15 and 50 ng/mL) in six replicates from three different analytical runs demonstrated an intra-assay precision (RSD) 4.43-6.26%, an inter-assay precision 5.25-7.45% and an overall accuracy (relative error) of <6.92%. The method can be applied to pharmacokinetic and bioequivalence studies of domperidone.  相似文献   

13.
A rapid and sensitive liquid chromatography–tandem mass spectrometric (LC‐MS/MS) assay method has been developed and fully validated for simultaneous quantification of donepezil and its active metabolite, 6‐o‐desmethyl donepezil in human plasma. Analytes and the internal standard were extracted from human plasma by liquid–liquid extraction technique using a 30:70 v/v mixture of ethyl acetate and n‐hexane. The reconstituted samples were chromatographed on a C18 column by using a 70:30 v/v mixture of acetonitrile and ammonium formate (5 mm , pH 5.0) as the mobile phase at a flow rate of 0.6 mL/min. The calibration curve obtained was linear (r ≥ 0.99) over the concentration range of 0.09–24.2 ng/mL for donepezil and 0.03–8.13 ng/mL for 6‐o‐desmethyl donepezil. The results of the intra‐day and inter‐day precision and accuracy studies were well within the acceptable limits. The proposed method was successfully applied for the estimation of the drug in real time plasma samples for pharmacokinetic studies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A selective, sensitive and high-throughput ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS-MS) method has been developed and validated for the quantification of HIV-protease inhibitors ritonavir (RTV), lopinavir (LPV) and indinavir (IDV) in human plasma. Sample clean-up involved protein precipitation of both drugs and fluconazole used as internal standard from 100 μL human plasma. All the analytes were chromatographically separated on a Waters Acquity UPLC BEH C18 (2.1 × 50 mm, 1.7 μm particle size) analytical column using 0.1% formic acid and methanol (40:60, v/v) as the mobile phase. The parent → product ion transitions for ritonavir (m/z 721.40→ 296.10), lopinavir (m/z 629.40→ 447.40) and indinavir (m/z 614.4→ 421.0) IS (m/z 307.10 → 220.10) were monitored on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring and positive ion mode. The method was validated over the concentration range of 30-15,000 ng/mL for LPV and IDV and 3-1500 ng/mL for RTV. The method was successfully applied to a pilot bioequivalence study in 36 healthy human subjects after oral administration of lopinavir 200 mg and ritonavir 50 mg tablet formulation under fasting conditions.  相似文献   

15.
A rapid, sensitive, and simple ultra-performance liquid chromatography-tandem mass spectrometry (UPLC/MS/MS) method for the determination of udenafil and its active metabolite, DA-8164, in human plasma and urine using sildenafil as an internal standard (IS) was developed and validated. Udenafil, DA-8164 and IS from a 100 microL aliquot of biological samples were extracted by protein precipitation using acetonitrile. Chromatographic separation was carried on an Acquity UPLC BEH C(18) column (50 x 2.1 mm, i.d., 1.7 microm) with an isocratic mobile phase consisting of acetonitrile and containing 0.1% formic acid (75:25, v/v) at flow rate of 0.4 mL/min, and total run time was within 1 min. Detection and quantification was performed by the mass spectrometer using multiple reaction-monitoring mode at m/z 517 --> 283 for udenafil, m/z 406 --> 364 for DA-8164 and m/z 475 --> 100 for IS. The assay was linear over a concentration range of 1-600 ng/mL with a lower limit of quantification of 1 ng/mL in both human plasma and urine. The coefficient of variation of this assay precision was less than 13.7%, and the accuracy exceeded 92.0%. This method was successfully applied for pharmacokinetic study after oral administration of udenafil 100 mg to healthy Korean male volunteers.  相似文献   

16.
Hu W  Xu Y  Liu F  Liu A  Guo Q 《Biomedical chromatography : BMC》2008,22(10):1108-1114
A sensitive, specific and rapid high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was described and validated for the quantification of ambroxol in human plasma using enalaprilat as the internal standard (IS). Chromatographic separation was performed on a Lichrospher CN column with a mobile phase of methanol and water (containing 0.1% formic acid) (70:30, v/v). The total run time was 5.0 min for each sample. The analytes was detected by mass spectrometry with electrospray ionization source in positive selected reaction monitoring mode. The precursor-fragment ion reaction for ambroxol was m/z 378.9 --> 263.8, and for IS was m/z 349.0 --> 205.9. The linearity was established over the concentration range of 1.56-400.00 ng/mL. The inter-day and the intra-day precisions were all within 10%. A simple protein precipitation with methanol was adopted for sample preparation. The extraction recoveries of ambroxol and IS were higher than 90.80%. The validated method was successfully applied in pharmacokinetic study after oral administration of 90 mg ambroxol to 24 healthy volunteers.  相似文献   

17.
A highly sensitive and specific LC-MS/MS method has been developed and validated for the estimation of zafirlukast (ZFK) with 500 microL human plasma using valdecoxib as an internal standard (IS). The API-4,000 LC-MS/MS was operated under multiple reaction-monitoring mode using the electrospray ionization technique. The assay procedure involved extraction of ZFK and IS from human plasma with ethyl acetate. The resolution of peaks was achieved with 10 mm ammonium acetate (pH 6.4):acetonitrile (20:80, v/v) on a Hypersil BDS C(18) column. The total chromatographic run time was 2.0 min and the elution of ZFK and IS occurred at approximately 1.11 and 1.58 min, respectively. The MS/MS ion transitions monitored were 574.2 --> 462.1 for ZFK and 313.3 --> 118.1 for IS. The method was proved to be accurate and precise at a linearity range of 0.15-600 ng/mL with a correlation coefficient (r) of >or=0.999. The method was rugged with 0.15 ng/mL as lower limit of quantitation. The intra- and inter-day precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was applied to a pharmacokinetic study in human volunteers following oral administration of 20 mg ZFK tablet.  相似文献   

18.
A high‐performance liquid chromatographic assay with tandem mass spectrometric detection was developed to simultaneously quantify fluoxetine and olanzapine in human plasma. The analytes and the internal standard (IS) duloxetine were extracted from 500 μL aliquots of human plasma through solid‐phase extraction. Chromatographic separation was achieved in a run time of 4.0 min on a Hypersil Gold C18 column (50 × 4.6 mm, 5 µm) using isocratic mobile phase consisting of acetonitrile–water containing 2% formic acid (70:30, v/v), at a flow‐rate of 0.5 mL/min. Detection of analytes and internal standard was performed by electrospray ionization tandem mass spectrometry, operating in positive‐ion and multiple reaction monitoring acquisition mode. The protonated precursor to product ion transitions monitored for fluoxetine, olanzapine and IS were m/z 310.01 → 147.69, 313.15 → 256.14 and 298.1 → 153.97, respectively. The method was validated over the concentration range of 1.00–150.20 ng/mL for fluoxetine and 0.12–25.03 ng/mL for olanzapine in human plasma. The intra‐batch and inter‐batch precision (%CV) across four quality control levels was ≤6.28% for both the analytes. In conclusion, a simple and sensitive analytical method was developed and validated in human plasma. This method is suitable for measuring accurate plasma concentration in bioequivalence study and therapeutic drug monitoring as well, following combined administration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A simple and sensitive liquid chromatography/tandem mass spectrometry method was developed and validated for determining rosuvastatin in human plasma, a new synthetic hydroxymethylglutaryl-coenzyme A reductase inhibitor. The analyte and internal standard (IS; cilostazol) were extracted by simple one-step liquid/liquid extraction with ether. The organic layer was separated and evaporated under a gentle stream of nitrogen at 40 degrees C. The chromatographic separation was performed on an Atlantis C18 column (2.1 mm x 150 mm, 5.0 microm) with a mobile phase consisting of 0.2% formic acid/methanol (30:70, v/v) at a flow rate of 0.20 mL/min. The analyses were carried out by multiple reaction monitoring (MRM) using the precursor-to-product combinations of m/z 482 --> 258 and m/z 370 --> 288. The areas of peaks from the analyte and the IS were used for quantification of rosuvastatin. The method was validated according to the FDA guidelines on bioanalytical method validation. Validation results indicated that the lower limit of quantification (LLOQ) was 0.2 ng/mL and the assay exhibited a linear range of 0.2-50.0 ng/mL and gave a correlation coefficient (r) of 0.9991 or better. Quality control samples (0.4, 8, 25 and 40 ng/mL) in six replicates from three different runs of analysis demonstrated an intra-assay precision (RSD) 7.97-15.94%, an inter-assay precision 3.19-15.27%, and an overall accuracy (relative error) of < 3.7%. The method can be applied to pharmacokinetic or bioequivalence studies of rosuvastatin.  相似文献   

20.
A high-throughput ultrasensitive analytical method based on liquid chromatography with positive ion atmospheric pressure chemical ionization (APCI) coupled to tandem mass spectrometric detection (LC/MS/MS) was developed for the determination of all-trans-4-oxo-retinoic acid (at4oxoRA), 13-cis-4-oxo-retinoic acid (13c4oxoRA), 13-cis-retinoic acid (13cRA), all-trans-retinoic acid (atRA) and all-trans-retinol (atROH) in human plasma. A stable isotope of atRA was used as internal standard (IS). The analytes and IS were isolated from 100 microL plasma by acetonitrile mono-phase extraction (MPE) performed in black 96-well microtiterplates. A 100 microL injection was focused on-column and chromatographed on an Agilent ZORBAX SB-C18 rapid-resolution high-throughput (RRHT) column with 1.8-microm particles (4.6 mmx50 mm) maintained at 60 degrees C. The initial mobile phase composition was acetonitrile/water/formic acid (10:90:0.1, v/v/v) delivered at 1.8 mL/min. Elution was accomplished by a fast gradient to acetonitrile/methanol/formic acid (90:10:0.1, v/v/v). The method had a chromatographic total run time of 7 min. An Applied Biosystems 4000 Q TRAP linear tandem mass spectrometer equipped with a heated nebulizer (APCI) ionization source was operated in multiple reaction monitoring (MRM) mode with the precursor-to-product ion transitions m/z 315.4-->297 (4-oxo-retinoic acids), 301.2-->205 (retinoic acids), 305.0-->209 (IS) and 269.2-->93 (retinol) used for quantification. The assay was fully validated and found to have acceptable accuracy, precision, linearity, sensitivity and selectivity. The mean extraction recoveries from spiked plasma samples were 80-105% for the various retinoids at three different levels. The intra-day accuracy of the assay was within 8% of nominal and intra-day precision was better than 8% coefficient of variance (CV) for retinoic acids. Inter-day precision results for quality control samples run over a 12-day period alongside clinical samples showed mean precision better than 12.5% CV. The limit of quantification was in the range of 0.1-0.2 ng/mL and the mass limit of detection (mLOD) was in the range 1-4 pg on column for the retinoic acids. The assay has been successfully applied to the analysis of 1700 plasma samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号