首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study presents a method based on the use of microwave-assisted extraction (MAE) for the quantitative analysis of 2,4,6-trichloroanisole (TCA), 2,3,4,6-tetrachloroanisole (TeCA), pentachloroanisole (PCA), 2,4,6-tribromoanisole (TBA), 2,4,6-trichlorophenol (TCP), 2,3,4,6-tetrachlorophenol (TeCP), pentachlorophenol (PCP) and 2,4,6-tribromophenol (TBP) in cork stoppers. The influential parameters of the MAE procedure (extraction time, temperature and solvent volume) were optimised using a central composite experimental design combined with desirability functions. The optimal conditions identified were temperature 170 degrees C, solvent volume 35 mL and extraction time 90 min. MAE extracts were concentrated and derivatised prior to separation and quantification by gas chromatography with electron capture detection. To evaluate the applicability of the proposed MAE method, recovery results were compared with those obtained with the Soxhlet extraction method; the results were similar with both extraction methods. The new method was also satisfactorily applied to real cork stopper samples.  相似文献   

2.
Cork taint is a musty off-flavour in wines mainly caused by 2,4,6-trichloroanisole, but other haloanisoles can contribute. In this work, a method for the extraction of 2,4,6-trichloroanisole, 2,4,6-tribromoanisole and 2,6-dichloroanisole has been developed. The procedure involves the extraction of the haloanisoles from cork by pressurised liquid extraction and the analysis of the extracts by both GC-μECD and GC-MS-MS. A central composite design was used to investigate the dependence of the recoveries of the analytes on the temperature, percentage pentane-diethyl ether ratio and the extraction time. Experimental data were then processed by using the multiple regression analysis in order to calculate a mathematical model representing the relationship between factors and responses and to determine the best experimental conditions for PLE method. These conditions corresponded to a temperature of 176 °C, an extraction time between 2.8 and 4 min and an 80:20 pentane:diethyl ether ratio.  相似文献   

3.
Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was evaluated for the simultaneous determination of five chlorophenols and seven haloanisoles in wines and cork stoppers. Parameters, such as the nature and volume of the extracting and disperser solvents, extraction time, salt addition, centrifugation time and sample volume or mass, affecting the DLLME were carefully optimized to extract and preconcentrate chlorophenols, in the form of their acetylated derivatives, and haloanisoles. In this extraction method, 1mL of acetone (disperser solvent) containing 30μL of carbon tetrachloride (extraction solvent) was rapidly injected by a syringe into 5mL of sample solution containing 200μL of acetic anhydride (derivatizing reagent) and 0.5mL of phosphate buffer solution, thereby forming a cloudy solution. After extraction, phase separation was performed by centrifugation, and a volume of 4μL of the sedimented phase was analyzed by GC-MS. The wine samples were directly used for the DLLME extraction (red wines required a 1:1 dilution with water). For cork samples, the target analytes were first extracted with pentane, the solvent was evaporated and the residue reconstituted with acetone before DLLME. The use of an internal standard (2,4-dibromoanisole) notably improved the repeatability of the procedure. Under the optimized conditions, detection limits ranged from 0.004 to 0.108ngmL(-1) in wine samples (24-220pgg(-1) in corks), depending on the compound and the sample analyzed. The enrichment factors for haloanisoles were in the 380-700-fold range.  相似文献   

4.
The development of a rapid, precise and accurate analytical method for the determination of methylmercury in tuna fish samples is described. The method is based on the use of isotope dilution GC/MS with electron impact ionization, a widespread technique in routine testing laboratories. A certified spike containing (202)Hg-enriched methylmercury was used for the isotope dilution of the samples. After extraction of the methylmercury from the sample, methylmercury was propylated using sodium tetrapropyl borate in SPME vials and the analytes were sampled from the headspace for 15 min. For isotope measurements, the molecular ion (MePrHg(+)) was used in the SIM mode. Five molecular ions were monitored, corresponding to the (198)Hg, (199)Hg, (200)Hg, (201)Hg and (202)Hg isotopes. The detection at masses corresponding to (198)Hg was used to correct for m + 1 contributions of (13)C from the organic groups attached to the mercury atom on the (199)Hg, (200)Hg, (201)Hg and (202)Hg masses with simple mathematical equations, and the concentration of methylmercury was calculated on the basis of the corrected (200)Hg/(202)Hg isotope ratio. The (202)Hg-enriched methylmercury spike was applied, with satisfactory results, to the determination of methylmercury in the certified reference material BCR 464. The method was successfully applied to the determination of methylmercury in tuna fish samples, and the obtained results were included in the CCQM-P39 interlaboratory exercise, organized by the Institute for Reference Materials and Measurements (IRMM, Geel, Belgium) with excellent agreement between our results and the average obtained by the other participants.  相似文献   

5.
A method for the simultaneous determination of the chloroanisoles and chlorophenols in cork samples with gas chromatography has been evaluated in view to its application. All the stages of the suggested procedure have been submitted to an in-depth examination using spiked ground corks. The recoveries of the method, which involves a simultaneous extraction with n-pentane followed by a second extraction using an aqueous basic solution where the phenolic derivates are transferred and, subsequently, derivatised, have been satisfactory for the all analytes at the studied spiking concentration levels. Good precision data and limits of detection between 1 ng/g and 2 ng/g were obtained for almost all compounds. As real samples, naturally contaminated cork slabs taken from different sources have been analysed, showing the presence of 2,4,6-trichloroanisole (TCA) and, in lesser extent, its direct precursor, 2,4,6-trichlorophenol (TCP). Removal studies have been performed by washing these tainted cork slabs with different solutions: Milli-Q water, sodium hydroxide and commercial products. Sodium hydroxide solutions have led to better analyte elimination, and the complete removal of TCP from the cork has been accomplished together with 72% of TCA reduction has been achieved.  相似文献   

6.
A new sample preparation and preconcentration technique – solid phase microextraction (SPME) – is reported for the application of several tinorganic compounds and tetrabutyllead in aqueous samples. The solvent-free procedure is rapid in comparison with liquid-liquid extraction or SFE but also sensitive. Analytical variables of the extraction such as adsorption and desorption time, stirring rate and temperature has been investigated. The determination has been performed by GC coupled with atomic emission detection (AED). After optimization of the conditions of SPME a calibration was realized on the basis of a multicomponent standard solution, prepared by ethylation of organotin salts directly in the sample using sodium tetraethylborate (NaBEt4) without prior separation of the analytes from the matrix. The method permits preconcentration. Values of about 10 can be reached. A detection limit of 0.09 pg Sn and 0.08 pg Pb can be achieved under optimized conditions. The proposed procedure has been successfully applied to the analysis of organotin compounds in various slurry samples.  相似文献   

7.
A new sample preparation and preconcentration technique - solid phase microextraction (SPME) - is reported for the application of several tinorganic compounds and tetrabutyllead in aqueous samples. The solvent-free procedure is rapid in comparison with liquid-liquid extraction or SFE but also sensitive. Analytical variables of the extraction such as adsorption and desorption time, stirring rate and temperature has been investigated. The determination has been performed by GC coupled with atomic emission detection (AED). After optimization of the conditions of SPME a calibration was realized on the basis of a multicomponent standard solution, prepared by ethylation of organotin salts directly in the sample using sodium tetraethylborate (NaBEt(4)) without prior separation of the analytes from the matrix. The method permits preconcentration. Values of about 10 can be reached. A detection limit of 0.09 pg Sn and 0.08 pg Pb can be achieved under optimized conditions. The proposed procedure has been successfully applied to the analysis of organotin compounds in various slurry samples.  相似文献   

8.
Tri-, tetra- and pentachlorophenol (TCP, TeCP and PCP) can be considered the precursors in the formation of corresponding chloroanisoles, known to be powerful odorants in corks and wine. Determining the presence of these chlorophenolic compounds in cork soaking solutions (ethanol/water mixtures, 12% (v/v) ethanol used for cork quality control testing), or in wine can be achieved by acetylation/gas chromatography electron-capture detection. In order to reach the required sensitivity, a previous preconcentration step is necessary. Solid-phase extraction (SPE) and headspace solid-phase microextraction (HS-SPME) have given good results for the preconcentration of TCP, TeCP and PCP in such matrices. The use of Oasis HLB cartridges gives acceptable recoveries for the three compounds when different volumes (50-250 mL) of cork macerate with concentrations ranging from 20 to 150 ng/L are processed. Preconcentration based on HS-SPME has also been optimised with a 100 microm polydimethylsiloxane fibre and in situ derivatization. The HS-SPME method allows chlorophenols in a cork soaking solution and in wine to be determined with a limit of detection of 1 ng/L for each compound (in cork macerate) and a repeatability of around 0.5%-5% (n=8) for a concentration level of 30 ng/L.  相似文献   

9.
A method was developed for the determination of trichloroanisole, tribromoanisole and pentachloroanisol by solid-phase microextraction and gas chromatography in paper samples (Kraft liner, Test liner and Miolo). Four commercial SPME fibers were evaluated: Polydimethylsiloxane (PDMS), Polyacrylate (PA), Carbowax/Divinylbenzene (CW/DVB) and Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS). DVB/CAR/PDMS gave the best results and was therefore selected. Other variables involved in the extraction procedure were studied and optimized, such as: sample volume, salting-out effect, temperature and extraction time, effect of organic solvent and previous sample preparation. Optimum conditions were obtained using 20 mL of sample with 5 mol L−1 NaCl in a 40 mL vial, extraction temperature of 70 °C and sonication and extraction time of 30 and 40 min, respectively. Detection limits ranged from 0.43 to 1.32 ng g−1 for all analytes. Recoveries between 70 and 100% were obtained and relative standard deviation was below 10% for all compounds.  相似文献   

10.
In order to survey the influence of estrogenic compounds on cyanobacteria, solid-phase microextraction (SPME) with a carbowax-divinylbenzene fibre was used for the determination of tert-octylphenol (tert-OP), n-nonylphenol (n-NP), technical nonylphenol (tech-NP) and bisphenol A (BPA) in cyanobacteria culture media by gas chromatography with flame ionization detection. Determinations were carried out without derivatization in deionized water and filtered culture media. A comparison between f2 and Fraquil culture media was performed, which showed that only f2 allowed quantitative recoveries. Headspace SPME with salting out, requiring only 10 mL of sample, was suitable for tert-OP, n-NP, and tech-NP determination with limits of detection (LOD) of <0.05 μg L−1. For BPA, direct immersion SPME could provide a LOD of 1 μg L−1. Automated sampling allowed reproducible extraction. No exudate substances overlapped with the studied compounds during the chromatographic separation and no matrix effects were observed. Ecotoxicity tests can be performed by single spiking of tert-OP and tech-NP and multiple spiking of n-NP due to its lower stability.  相似文献   

11.
A new fiber for solid-phase microextraction (SPME) employing a metallic support coated with an inorganic material is proposed. A nitinol alloy (NiTi) was used as the support material due to its super elasticity and shape memory properties. Zirconium oxide (ZrO2) was electrodeposited onto NiTi using chronoamperometry. The surface characteristics and morphology of the coated and uncoated support were evaluated through scanning electronic microscopy and dispersive energy microanalysis. This assembly was applied in the extraction of three halophenols from aqueous samples. A multivariate approach was used for optimization of the variables involved in the system. The Doehlert matrix was used for evaluation of the best derivatization conditions and a Box-Behnken design to obtain the best extraction conditions. In order to investigate the repeatability, one fiber was used for six extraction tests under similar conditions and the relative standard deviations (R.S.D.) were lower than 12.5%. Detection limits were lower than 0.30 ng mL−1. Correlation coefficients were higher than 0.997. Extraction efficiency of the NiTi-ZrO2 fiber was similar to a PDMS 7 μm commercial fiber, even though it had a lower coating thickness of 1.35 μm. Considering the amount extracted per unit volume, the NiTi-ZrO2 fiber had a better extraction profile when compared to commercial fibers. The new SPME fiber has a lifetime of over 500 extractions. Thus, it is a promising alternative for low-cost analysis, as the proposed fiber is robust, and easily and inexpensively prepared.  相似文献   

12.
Certain haloanisoles present at trace levels cause a large part of earthy-musty off-flavor problems in drinking water. These potent odorous chemicals come mainly through biomethylation of their corresponding halopenols. To enable the investigation of both families of compounds, a method involving solid-phase microextraction (SPME) was developed and the main parameters governing SPME were optimized. This method allows the simultaneous quantification of haloanisoles and halophenols at levels ranging from 1 to 100 or 250 ng/l, with detection limits of about 0.5 ng/l and could be applied to potable as well as raw surface waters.  相似文献   

13.
A dispersive liquid-liquid microextraction (DLLME) method has been optimised for simultaneously extracting 2,4,6-trichloranisole (TCA), 2,3,4,6-tetrachloroanisole (TeCA), 2,4,6-tribromoanisole (TBA), pentachloroanisole (PCA), 2,4,6-trichlorophenol (TCP), 2,3,4,6-tetrachlorophenol (TeCP), 2,4,6-tribromophenol (TBP) and pentachlorophenol (PCP) from wine. The haloanisoles and halophenols were automatically determined using a gas chromatography-electron-capture detection (GC-ECD) system. Derivatisation of halophenols was performed at the same time as DLLME. Firstly, disperser and extraction solvents, salt addition and temperature conditions were selected. Then, the volume of disperser solvent, extraction solvent and derivatisation agent, and the percentage of base were optimised by means of a central composite design combined with desirability functions. The optimal extraction-derivatisation conditions found were 1.3 mL of acetone, 150 μL of carbon tetrachloride, 75 μL of acetic anhydride and a percentage of base of 0.7%; with no salt addition and at room temperature. Under these conditions, the proposed method showed satisfactory linearity (with correlation coefficients over 0.994), repeatability (below 9.7%) and reproducibility (below 9.9%). Moreover, detection limits were lower than the olfactory threshold of the compounds. The developed method was successfully applied to the analysis of red wine samples. To our knowledge, this is the first time that DLLME has been applied to determine cork taint responsible compounds in wine.  相似文献   

14.
15.
This paper proposes a multiple headspace solid-phase microextraction (MHS-SPME) method coupled to gas chromatography-tandem mass spectrometry detection (GC/MS/MS) for the simultaneous determination of 2,4,6-trichloroanisole, 2,3,4,6-tetrachloroanisole, pentachloroanisole, 2,4,6-tribromoanisole, 4-ethylphenol, 4-ethylguaiacol, 4-vinylphenol and 4-vinylguaiacol in wines. These compounds are involved in the presence of "cork taint" and Brett character in wines. The MHS-SPME method is a modification of SPME developed for quantitative analysis that avoids possible matrix effects based on an exhaustive analyte extraction from the sample. After demonstrating the existence of matrix effect in the analysis of the target compounds by HS-SPME with a divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fibre, the MHS-SPME method was developed and validated. The proposed method showed satisfactory linearity, precision and detection limits, all below the odour detection thresholds of the compounds in wine matrices. Good recoveries were observed for all compounds, always above 90%, and the repeatability obtained was considered acceptable, ranging between 2 and 11%. After checking the applicability of the method by comparing the results recorded with those obtained with the standard addition method, the method was applied successfully to the analysis of wine samples. To our knowledge, this is the first time that MHS-SPME combined with GC/MS/MS has been applied to simultaneously determine haloanisoles and volatile phenols in wine.  相似文献   

16.
Summary ICP-AES has been used for the determination of rare earth elements (REE) in samples of phosphorite deposits collected from the Western Desert, Egypt. Complete dissolution of the samples was achieved by using acid digestion with HF/HNO3/HCl in a PTFE closed vessel and subsequent treatment with HClO4, with the same procedure but with fuming HCl replacing HClO4 and with HNO3 and fuming HCl in a quartz vessel and subsequent treatment with HF/HClO4/HNO3. Analysis lines for La, Ce, Pr, Nd, Sm, Gd, Dy and Y were selected after study of the spectral interferences for the sample types concerned. Results revealed that the average total content of the REE, which could be directly determined in the present samples, varies between 1.08 and 1.53 mg/g, whereas individual element concentrations range from 40 to 300 g/g. Analysis results obtained with the different dissolution techniques were found to be in good agreement. On leave from the National Research Centre, Physics Department — Spectroscopy Laboratory, Cairo, Egypt  相似文献   

17.
Flame retardants, surfactants, pharmaceutical and personal care products, among other compounds, have been the object of numerous environmental studies. In this chapter, the application of microwave-assisted extraction (MAE) in the development of analytical methods for several groups of organic compounds with growing concern as emerging pollutants has been considered. Compared to other extraction techniques, optimization of MAE experimental conditions is rather easy owing to the low number of influential parameters (i.e. matrix moisture, nature of the solvent, time, power, and temperature in closed vessels). The great reduction in the extraction time and solvent consumption, as well as the possibility of performing multiple extractions, increasing the sample throughput, can also be highlighted among MAE advantages. In summary, the study of several applications of MAE to environmental problems demonstrates that this technique constitutes a good alternative for the determination of organic compounds in environmental samples. It can be used as a rapid screening tool, and also to obtain detailed information on the sources, behaviour and fate of emerging pollutants in environmental matrices.  相似文献   

18.
Extraction, pre-concentration and determination of trace amounts of mercury ions from water samples were investigated by magnetic solid phase extraction (MSPE) method using Fe3O4 nanoparticles decorated with polythionine as an adsorbent. A simple chemical synthesis by catalytic reaction of thionine in the presence of FeCl3 and hydrogen peroxide was used for preparation of the magnetic sorbent. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, vibrating sample magnetometer analysis and Fourier transform infrared spectroscopy were used to characterise the adsorbent. Mercury ions were determined by cold vapour atomic absorption spectrometry. The parameters for MSPE procedure, such as pH of the extraction solution, adsorption time, weight adsorbent, elution conditions (type, concentration and volume of the eluent), volume of the sample solution and effects of coexisting ions were investigated. The obtained optimal conditions were: sample pH of 4; sorbent amount of 4 mg; sorption time of 20 min; elution solvent of HNO3 (0.3 mol L?1)/thiourea (2% w/v) with volume of 2 mL, and breakthrough volume of 400 mL. A good linearity in the concentration range of 0.025–40 µg L?1 (R2 > 0.999) with the pre-concentration factor of 198 was obtained. The limits of detection and quantification were achieved as 0.008 and 0.025 µg L?1, respectively. Furthermore, sea and river water samples were analysed and good recoveries (97.1–99.6%) were obtained.  相似文献   

19.
The application of ultrasound-assisted extraction (UAE) to the sample preparation of environmental and food samples has increased in the last years. This technique has been used in the development of methods for the analysis of numerous contaminants, including organic compounds (pesticides, pharmaceuticals, polycyclic aromatic hydrocarbons, polyhalogenated flame retardants, etc.) and heavy metals. The aim of this work is to review the application of this extraction procedure to the analysis of contaminants in food and soil and the comparison of its use with other well-established extraction procedures. The advantages and disadvantages of this technique together with the possibility of coupling UAE with other analytical techniques will be also discussed.  相似文献   

20.
A novel, simple and efficient method for determining persistent organic pollutants (POPs) in tissue samples has been developed. This technique involves the use of simultaneous microwave-assisted digestion (MAD) and micro-solid-phase extraction (micro-SPE), in which the sorbent is held within a propylene membrane envelope, with gas chromatographic-mass spectrometric (GC-MS) analysis. The POPs studied included eleven organochlorine pesticides and five polychlorinated biphenyl congeners. Optimization of the MAD-micro-SPE parameters was performed. The relative standard deviations (RSDs) of the method ranged from 0.14 to 12.7%. Correlation coefficients up to 0.9999 were obtained across a concentration range of 1.25-50 ng g(-1). The method detection limits for POPs ranged from 0.002 to 0.009 ng g(-1). A preliminary study applying the MAD-micro-SPE procedure to human ovarian cancer tissue showed that it was capable of detecting the presence of a wide spectrum of different POPs in benign and malignant tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号