共查询到20条相似文献,搜索用时 9 毫秒
1.
This review article studies some adaptive chaos synchronization methods that were already presented in the literature for a general class of chaotic systems. In this regard, the proposed adaptive controllers and parameter update laws in several papers are inspected, and it is shown that many works suffer from novelty and they can be categorized in a union set. 相似文献
2.
In this paper, an adaptive sliding mode control method is introduced to ensure robust synchronization of two different fractional-order chaotic systems with fully unknown parameters and external disturbances. For this purpose, a fractional integral sliding surface is defined and an adaptive sliding mode controller is designed. In this method, no knowledge of the bounds of parameters and perturbation is required in advance and the parameters are updated through an adaptive control process. The proposed scheme is global and theoretically rigorous. Two examples are given to illustrate effectiveness of the scheme, in which the synchronizations between fractional-order chaotic Chen system and fractional-order chaotic Rössler system, between fractional-order hyperchaotic Lorenz system and fractional-order hyperchaotic Chen system, respectively, are successfully achieved. Corresponding numerical simulations are also given to verify the analytical results. 相似文献
3.
Chaotic systems in practice are always influenced by some uncertainties and external disturbances. This paper investigates the problem of practical synchronization of fractional-order chaotic systems. Based on Lyapunov stability theory and a fractional-order differential inequality, a modified adaptive control scheme and adaptive laws of parameters are developed to robustly synchronize coupled fractional-order chaotic systems with unknown parameters and uncertain perturbations. This synchronization approach is simple, global and theoretically rigorous. Simulation results for two fractional-order chaotic systems are provided to illustrate the effectiveness of the proposed scheme. 相似文献
4.
A modified adaptive control method is developed in this article and the parameters identification method is then applied in fractional order systems with unknown parameters. The new modified control method based on Lyapunov stability theory is successfully applied to investigate the synchronization of pair of fractional order systems amongst Genesio–Tesi, Qi and Chen systems. By means of the Adams–Bosford–Moulton method, the numerical results show that the modified method is easy to implement and reliable for synchronizing the two different fractional order chaotic systems. 相似文献
5.
By incorporating a time-varying parameter into T-S fuzzy logic systems with nonlinear consequents (T-S-FLS-NRC), the synchronization of driver-response chaotic systems with unknown nonlinearities and disturbances is synthesized via state feedback controllers and updated adaptive laws. During designing process of synchronization, only three common parameters are needed to be adjusted automatically, and the number of adaptive laws is not related with the number of IF-THEN rules. Meanwhile, T-S-FLS-NRC is employed to approximate the unknown nonlinearities for the master and slave systems. The general form and high approximate capacity of T-S-FLS-NRC is useful to obtain fewer fuzzy rules than other fuzzy logic systems such as Mamdani or T-S fuzzy logic system with linear consequents. The synchronization method in this paper cannot only significantly reduce the on-line computational burden, but also can synthesize the fuzzy rules with high interpretability by means of intuition inferences. Finally, a numerical example is used to show the validity of the proposed synchronization method. 相似文献
6.
In this paper, a new effective approach??backstepping with Ge?CYao?CChen (GYC) partial region stability theory (called BGYC in this article) is proposed to applied to adaptive synchronization. Backstepping design is a recursive procedure that combines the choice of a Lyapunov function with the design of a controller, and it presents a systematic procedure for selecting a proper controller in chaos synchronization. We further combine the systematic backstepping design and GYC partial region stability theory in this article, Lyapunov function can be chosen as a simple linear homogeneous function of states, and the controllers and the update laws of parameters shall be much simpler. Further, it also introduces less simulation error??the numerical simulation results show that the states errors and parametric errors approach to zero much more exactly and efficiently, which are compared with the original one. Two cases are presented in the simulation results to show the effectiveness and feasibility of our new strategy. 相似文献
7.
Our main objective in this work is to investigate complete synchronization (CS) of n-dimensional chaotic complex systems with uncertain parameters. An adaptive control scheme is designed to study the synchronization of chaotic attractors of these systems. We applied this scheme, as an example, to study complete synchronization of chaotic attractors of two identical complex Lorenz systems. The adaptive control functions and the parameters estimation laws are calculated analytically based on the complex Lyapunov function. We show that the error dynamical systems are globally stable. Numerical simulations are computed to check the analytical expressions of adaptive controllers. 相似文献
8.
This letter investigates the adaptive finite-time synchronization of different coupled chaotic (or hyperchaotic) systems with unknown parameters. The sufficient conditions for achieving the generalized finite-time synchronization of two chaotic systems are derived based on the theory of finite-time stability of dynamical systems. By the adaptive control technique, the control laws and the corresponding parameters update laws are proposed such that the generalized finite-time synchronization of nonidentical chaotic (or hyperchaotic) systems is to be obtained. These results obtained are in good agreement with the existing one in open literature and it is shown that the technique introduced here can be further applied to various finite-time synchronizations between dynamical systems. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed scheme. 相似文献
9.
This paper is concerned with the robust adaptive synchronization problem for a class of chaotic systems with actuator failures and unknown nonlinear uncertainty. Combining adaptive method and linear matrix inequality (LMI) technique, a novel type of robust adaptive reliable synchronization controller is proposed, which can eliminate the effect of actuator fault and nonlinear uncertainty on systems. After solving a set of LMIs, synchronization error between the master chaotic and slave chaotic systems can converge asymptotically to zero. Finally, illustrate examples about chaotic Chua’s circuit system and Lorenz systems are provided to demonstrate the effectiveness and applicability of the proposed design method. 相似文献
11.
In this paper, we apply the nonsingular terminal sliding mode control technique to realize the novel combination-combination synchronization between combination of two chaotic systems as drive system and combination of two chaotic systems as response system with unknown parameters in a finite time. On the basic of the adaptive laws and finite-time stability theory, an adaptive combination sliding mode controller is proposed to ensure the occurrence of the sliding motion in a given finite time for four different chaotic systems. In theory, it is proved that the sliding mode technique can realize fast convergence for four different chaotic systems in the finite time. Some criteria and corollaries are derived for finite-time combination-combination synchronization of four different chaotic systems. Numerical simulation results are shown to verify the effectiveness and correctness of the combination-combination synchronization. 相似文献
13.
In this paper, a projective synchronization problem of master–slave chaotic systems is investigated. More specifically, a fuzzy adaptive controller is investigated for a projective synchronization of uncertain multivariable chaotic systems. The adaptive fuzzy-logic systems are used to approximate the unknown functions. A decomposition property of the control gain matrix is used in the controller design and the stability analysis. A Lyapunov approach is employed to derive the parameter adaptation laws and prove the boundedness of all signals of the closed-loop system as well as the exponential convergence of the synchronization errors to an adjustable region. Numerical simulations are performed to verify the effectiveness of the proposed synchronization scheme. 相似文献
15.
The problem of real combination synchronization between three complex-variable chaotic systems with unknown parameters is investigated by nonsingular terminal sliding mode control in a finite time. Based on the adaptive laws and finite-time stability theory, a nonsingular terminal sliding mode control is designed to ensure the real combination synchronization of three complex-variable chaotic systems in a given finite time. It is theoretically gained that the introduced sliding mode technique has finite-time convergence and stability in both arriving and sliding mode phases. Numerical simulation results are given to show the effectiveness and reliability of the finite-time real combination synchronization. 相似文献
16.
In this paper, a robust adaptive intelligent sliding model control (RAISMC) scheme for a class of uncertain chaotic systems with unknown time-delay is proposed. A sliding surface dynamic is appropriately constructed to guarantee the reachability of the specified sliding surface. Within this scheme, neuro-fuzzy network (NFN) is utilized to approximate the unknown continuous function. The robust controller is an adaptive controller used to dispel the unknown uncertainty and approximation errors. The adaptive parameters of the control system are tuned on-line by the derived adaptive laws based on a Lyapunov stability analysis. Using appropriate Lyapunov–Krasovskii (L–K) functional in the Lyapunov function candidate, the uncertainty caused by unknown time delay is compensated and the global asymptotic stability of the error dynamics system in the specified switching surface is accomplished. Finally, the proposed RAISMC system is applied to control a Hopfield neural network, Cellular neural networks, Rössler system, and to achieve synchronization between the Chen system with two time delays with Rössler system without time delay. The results are representative of outperformance of the proposed method in all cases. 相似文献
17.
Nonlinear Dynamics - This paper investigates the parameter and state estimation problems for a class of fractional-order nonlinear systems subject to the perturbation on the observer gain. The... 相似文献
18.
This paper proposes a novel robust fractional-order sliding mode approach for the synchronization of two fractional-order chaotic systems in the presence of system parameter uncertain and external disturbance. An adaptive sliding mode controller is constructed resorted to the designed fractional integral type sliding surface. Based on the Lyapunov stability theorem, the stability of the closed error system is proved. Finally, a numerical simulation is performed to illustrate the effectiveness of the proposed method. 相似文献
19.
This paper presents a new technique using a recurrent non-singleton type-2 sequential fuzzy neural network (RNT2SFNN) for synchronization of the fractional-order chaotic systems with time-varying delay and uncertain dynamics. The consequent parameters of the proposed RNT2SFNN are learned based on the Lyapunov–Krasovskii stability analysis. The proposed control method is used to synchronize two non-identical and identical fractional-order chaotic systems, with time-varying delay. Also, to demonstrate the performance of the proposed control method, in the other practical applications, the proposed controller is applied to synchronize the master–slave bilateral teleoperation problem with time-varying delay. Simulation results show that the proposed control scenario results in good performance in the presence of external disturbance, unknown functions in the dynamics of the system and also time-varying delay in the control signal and the dynamics of system. Finally, the effectiveness of proposed RNT2SFNN is verified by a nonlinear identification problem and its performance is compared with other well-known neural networks. 相似文献
20.
A new adaptive synchronization scheme by pragmatical asymptotically stability theorem is proposed in this paper. Based on this theorem and nonlinear control theory, a new adaptive synchronization scheme to design controllers can be obtained and especially the constraints for minimum values of feedback gain K in controllers can be derived. This new strategy shows that the constraint values of feedback gain K are related to the error of unknown and estimated parameters if the goal system is given. Through this new strategy, an appropriate feedback gain K can be always decided easily to obtain controllers achieving adaptive synchronization. Two identical Lorenz systems with different initial conditions and two completely different nonlinear systems with different orders, augmented R?ssler??s system and Mathieu?Cvan der Pol system, are used for illustrations to demonstrate the efficiency and effectiveness of the new adaptive scheme in numerical simulation results. 相似文献
|