首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 869 毫秒
1.
Polaron tunnelling is studied in xPA/nPPP/xPA (PA for polyacetylene and PPP poly (p-phenylene)) triblock copolymer, which has a well-barrier-well structure. An extended tight-binding Hamiltonian including external electric field is adopted. Without electric field, the injected electrons would not extend over the whole copolymer chain but instead be confined in the segments of PA. This is different from the behaviour of the traditional semiconductors. It is found that the polaron can transfer to the potential barrier-PPP segment when the applied electric field reaches a certain value. The critical polaron tunnelling electric fields depend upon the lengths of PPP segments.  相似文献   

2.
王海东  马维刚  过增元  张兴  王玮 《中国物理 B》2011,20(4):40701-040701
Using a transient thermoreflectance (TTR) technique,several Au films with different thicknesses on glass and SiC substrates are measured for thermal characterization of metallic nano-films,including the electron-phonon coupling factor G,interfacial thermal resistance R,and thermal conductivity K s of the substrate. The rear heating-front detecting (RF) method is used to ensure the femtosecond temporal resolution. An intense laser beam is focused on the rear surface to heat the film,and another weak laser beam is focused on the very spot of the front surface to detect the change in the electron temperature. By varying the optical path delay between the two beams,a complete electron temperature profile can be scanned. Different from the normally used single-layer model,the double-layer model involving interfacial thermal resistance is studied here. The electron temperature cooling profile can be affected by the electron energy transfer into the substrate or the electron-phonon interactions in the metallic films. For multiple-target optimization,the genetic algorithm (GA) is used to obtain both G and R. The experimental result gives a deep understanding of the mechanism of ultra-fast heat transfer in metals.  相似文献   

3.
Numerical calculations based on the transfer matrix method are carried out, and the results of band gap with resonance peaks are obtained. The electron beam lithography technology (EBL) and induction coupling plasma (ICP) etching are used to make the photonic crystal (PC) structures, and from several scanning electron microscope images, the PC structures are observed with features closing to the design. In order to create the tiny PC structures in the right places of the waveguide by the EBL technology at different time, some alignment markers are deposited on the chip, which are made of gold that deposited on titanium for its good adhesion to the underlying Si. An optical testing bed is designed for measurement of the optical characterization of PC structures. Through the analysis of the measured data, a △λ value of 0.8 nm is obtained and for the centre frequency of 1547 nm, a very high quality factor value of 1933 can be obtained. The 3-rim difference represents only a 0.2% error from the theoretical centre.  相似文献   

4.
A.John Peter  Chang Woo Lee 《中国物理 B》2012,21(8):87302-087302
Cd1-x ZnxS nanocrystals are prepared by a co-precipitation method with different atomic fractions of Zn.The texture,structural transformation and optical properties with increasing x value in Cd1-x ZnxS are studied with scanning electron microscopy,electron diffraction patterning,and absorption spectra respectively.Quantum confinement in a strained CdS/Cd1-xZnxS related nanodot with various Zn content values is investigated theoretically.Binding energies on exciton bound CdS/CdxZn1-xS quantum dot are computed,with consideration of the internal electric field induced by the spontaneous and piezoelectric polarizations,and thereby the interband emission energy is calculated as a function of the dot radius.The optical band gap from the UV absorption spectrum is compared with the interband emission energy computed theoretically.Our results show that the average diameter of composite nanoparticles ranges from 3 nm to 6 nm.The X-ray diffraction pattern shows that all the peaks shift towards the higher diffracting angles with an increase in Zn content.The lattice constant gradually decreases as the Zn content increases.The strong absorption edge shifts towards the lower wavelength region and hence the band gap of the films increases as the Zn content increases.The values of the absorption edge are found to shift towards the shorter wave length region and hence the direct band gap energy varies from 2.5 eV for the CdS film and 3.5 eV for the ZnS film.Our numerical results are in good agreement with the experimental results.  相似文献   

5.
郭三栋 《中国物理 B》2016,25(5):57104-057104
We investigate magnetic ordering and electronic structures of Cr_2MoO_6under hydrostatic pressure. To overcome the band gap problem, the modified Becke and Johnson exchange potential is used to investigate the electronic structures of Cr_2MoO_6. The insulating nature at the experimental crystal structure is produced, with a band gap of 1.04 eV, and the magnetic moment of the Cr atom is 2.50 μB, compared to an experimental value of about 2.47 μB. The calculated results show that an antiferromagnetic inter-bilayer coupling–ferromagnetic intra-bilayer coupling to a ferromagnetic inter-bilayer coupling–antiferromagnetic intra-bilayer coupling phase transition is produced with the pressure increasing. The magnetic phase transition is simultaneously accompanied by a semiconductor–metal phase transition. The magnetic phase transition can be explained by the Mo–O hybridization strength, and ferromagnetic coupling between two Cr atoms can be understood by empty Mo-d bands perturbing the nearest O-p orbital.  相似文献   

6.
We calculate structural, electronic properties and chemical bonding of borate Li4CaB2O6 under high pressure by means of the local density-functional pseudopotential approach. The equilibrium lattice constants, density of states, Mulliken population, bond lengths, bond angles as well as the pressure dependence of the band gap are presented. Analysis of the simulated high pressure band structure suggests that borate Li4CaB2O6 can be used as the semi-conductor optical material. Based on the Mulliken population analysis, it is found that the electron transfer of the Li atom is very different from that of other atoms in the studied range of high pressures. The charge populations of the Li atom decrease with the pressure up to 60 GPa, then increase with the pressure.  相似文献   

7.
The geometrical and electronic structures of nitrogen-doped β-SiC are investigated by employing the first principles of plane wave ultra-soft pseudo-potential technology based on density functional theory. The structures of SiC1-xNx (x = 0, 1/32, 1/16, 1/8, 1/4) with different doping concentrations are optimized. The results reveal that the band gap of β-SiC transforms from an indirect band gap to a direct band gap with band gap shrinkage after carbon atoms are replaced by nitrogen atoms. The Fermi level shifts from valence band top to conduction band by doping nitrogen in pure β-SiC, and the doped β-SiC becomes metallic. The degree of Fermi levels entering into the conduction band increases with the increment of doping concentration; however, the band gap becomes narrower. This is attributed to defects with negative electricity occurring in surrounding silicon atoms. With the increase of doping concentration, more residual electrons, more easily captured by the 3p orbit in the silicon atom, will be provided by nitrogen atoms to form more defects with negative electricity.  相似文献   

8.
陈锐  周斌 《中国物理 B》2016,25(6):67204-067204
For a two-dimensional Lieb lattice,that is,a line-centered square lattice,the inclusion of the intrinsic spin–orbit(ISO)coupling opens a topologically nontrivial gap,and gives rise to the quantum spin Hall(QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap.Generally,due to the finite size effect in QSH systems,the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum.In this paper,we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions,i.e.,the straight,bearded and asymmetry edges.The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice.For a strip Lieb lattice with two straight edges,the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum.Moreover,it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice,and no gap is opened in the edge band.It is concluded that the finite size effect of QSH states is absent in the case with the straight edges.However,in the other two cases with the bearded and asymmetry edges,the energy gap induced by the finite size effect is still opened with decreasing the width of the strip.It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms.  相似文献   

9.
史顺平  张传瑜  赵晓凤  李侠  闫珉  蒋刚 《中国物理 B》2017,26(8):83103-083103
Density functional theory(DFT) with the B3 LYP method and the SDD basis set is selected to investigate In_nNi,In_nNi~-, and In_nNi~+ (n = 1–14) clusters. For neutral and charged systems, several isomers and different multiplicities are studied with the aim to confirm the most stable structures. The structural evolution of neutral, cationic, and anionic In_nNi clusters, which favors the three-dimensional structures for n = 3–14. The main configurations of the In_nNi isomers are not affected by adding or removing an electron, the order of their stabilities is also nearly not affected. The obtained binding energy exhibits that the Ni-doped In_(13) cluster is the most stable species of all different sized clusters. The calculated fragmentation energy and the second-order energy difference as a function of the cluster size exhibit a pronounced even–odd alternation phenomenon. The electronic properties including energy gap(E_g), adiabatic electron affinity(AEA), vertical electron detachment energy(VDE), adiabatic ionization potential energy(AIP), and vertical ionization potential energy(VIP) are studied. The total magnetic moments show that the different magnetic moments depend on the number of the In atoms for charged In_nNi. Additionally, the natural population analysis of In_nNi~((0,±1)clusters is also discussed.  相似文献   

10.
朱丽萍  邱宇  童国平 《中国物理 B》2012,21(7):77302-077302
We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su-Schrieffer-Heeger (SSH) model with a nonadiabatic dynamics method. It is found that a match between the Fermi level of electrodes and the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of organic molecules can be greatly affected by the length of the organic chains, which has a great impact on electron injection. The correlation between oligomers and electrodes is found to open more efficient channels for electron injection as compared with that in polymer/electrode structures. For oligomer/electrode structures, we show that the Schottky barrier essentially does not affect the electron injection as the electrode work function is smaller than a critical value. This means that the Schottky barrier is pinned for a small work-function electrode. For polymer/electrode structures, we find that it is possible for the Fermi level of electrodes to be pinned to the polaronic level. The condition under which the Fermi level of electrodes exceeds the polaronic level of polymers is shown to not always lead to spontaneous electron transfer from electrodes to polymers.  相似文献   

11.
三嵌段共聚物的电子结构及态密度特征   总被引:2,自引:1,他引:1  
采用紧束缚近似计算方法,针对小带隙的聚乙炔(polyacetylene,(PA))和大带隙的聚对苯撑(poly(p-phenylene),(PPP)组成的三嵌段共聚物(triblock copolymer)-(PA)x-(PPP)n-(PA)y-和-(PPP)x-(PA)n-(PPP)y-性质进行了研究,发现它们具有典型的量子阱特征.对均聚物PPP和PA以及三嵌段共聚物的态密度(density of states, (DOS))进行了计算分析,发现共聚物的态密度与均聚物的态密度有着显著的区别,共聚物的带隙的大小介于大带隙的PPP和小带隙的PA之间,在共聚物中与PPP的导带和价带的子带隙以及共聚物的导带底和价带顶中,所存在的能态密度只能由PA来提供,而在共聚物的价带底和导带顶的能态密度则取决于PPP的态密度.  相似文献   

12.
In this paper, the elastic wave propagation in periodic cylinder magnetoelectroelastic composite structures is studied using the plane wave expansion method. The band structure characteristics of magnetoelectroelastic rods embedded in polymer matrix and the reverse case are investigated taking the electric, magnetic and mechanical coupling effects into account. The generalised eigenvalue equation is derived to analyse the in-plane and out-of-plane modes, respectively. The numerical calculations for both the cases with Kagome lattices are performed. The relation between the gap widths and filling fractions are discussed in detail. The effects of the magnetoelectricity on the band structures and widths of band gaps are analysed. The band gap characteristics are illustrated further and the results will be helpful to design such kind of composite structures.  相似文献   

13.
建立了紧束缚近似下的二嵌段共聚物-(A)x-(B)y-的物理模型,研究了组成共聚物的均聚物间界面相互作用-界面耦合的强弱对共聚体系的能带结构、键结构性质等的影响.共聚物的带隙也可通过改变均聚物之间的界面相互作用来加以调制,进一步发现可用界面势阱或能垒(energy barrier)来表征界面耦合的强弱.  相似文献   

14.
Li-Qing Hu 《中国物理 B》2022,31(5):54302-054302
Based on the theory of composite materials and phononic crystals (PCs), a large-size rectangular piezoelectric composite plate with the quasi-periodic PC structure composed of PZT-4 and epoxy is proposed in this paper. This PC structure can suppress the transverse vibration of the piezoelectric composite plate so that the thickness mode is purer and the thickness vibration amplitude is more uniform. Firstly, the vibration of the model is analyzed theoretically, the electromechanical equivalent circuit diagram of three-dimensional coupled vibration is established, and the resonance frequency equation is derived. The effects of the length, width, and thickness of the piezoelectric composite plate at the resonant frequency are obtained by the analytical method and the finite element method, the effective electromechanical coupling coefficient is also analyzed. The results show that the resonant frequency can be changed regularly and the electromechanical conversion can be improved by adjusting the size of the rectangular piezoelectric plate. The effect of the volume fraction of the scatterer on the resonant frequency in the thickness direction is studied by the finite element method. The band gap in X and Y directions of large-size rectangular piezoelectric plate with quasi-periodic PC structures are calculated. The results show that the theoretical results are in good agreement with the simulation results. When the resonance frequency is in the band gap, the decoupling phenomenon occurs, and then the vibration mode in the thickness direction is purer.  相似文献   

15.
The photonic band structures of two-dimensional (2D) photonic crystals with etched interfacial layers between air rods and the background dielectric is studied theoretically. The effect of etching interfacial layers on absolute photonic band gap (PBG) is analyzed quantitatively. Numerical calculations are carried out based on Maxwell's equations and the plane-wave expansion method. It is shown that the physical property of interfacial layers influence the absolute PBG, and the existence of interfacial layers cannot enlarge the largest absolute PBG of an ideal case without interfacial layers.  相似文献   

16.
从Maxwell方程出发,采用类似于量子力学Kronig-Penney模型求解周期势的方法,结合双水电极介质阻挡放电的实验结果,研究了电子密度ne对一维等离子体光子晶体禁带特性的影响。研究发现:电子密度对等离子体光子晶体光子禁带的位置和宽度均有重要的影响;等离子体光子晶体的禁带宽度随电子密度的增加而增大,增长速率为电子密度的函数;等离子体光子晶体的截止频率、光子禁带边缘频率随电子密度的增大而增大。给出了当等离子体光子晶体具有显著禁带宽度时的电子密度的理论临界值。  相似文献   

17.
A one-dimensional disordered system of electrons described by a tight binding model interacting with vibrational degrees of freedom (in harmonic approximation) is considered. A stable configuration is determined by a numerical minimization of the total energy which is based on the adiabatic approximation. The behaviour of the electron density (charge density wave) and the density of states is analysed. The localization properties are investigated as well. In contrast to the corresponding disordered system with vanishing electron-phonon coupling the present model has an energy gap. The formation of the gap and the polaron band is shown to be quite different for both onsite and intersite types of coupling terms. For large disorder, the lattice distortion and the gap disappear if only the vibrational contribution to the intersite coupling is important. They increase, however, if only the vibrational contribution to the site energies is taken into account. In both cases the localization length decreases upon increasing the electron-phonon coupling energy. The results are discussed with respect to low dimensional organic materials and amorphous semiconductors.  相似文献   

18.
张思文  吴九汇 《物理学报》2013,62(13):134302-134302
本文提出了一种新型局域共振复合单元声子晶体结构, 并结合有限元方法对结构的带隙机理及低频共振带隙特性进行了分析和研究. 共振带隙产生的频率位置由所对应的局域共振模态的固有频率决定, 并且带隙宽度与局域共振模态的品质因子及其与基体之间的耦合作用强度有关. 采用局域共振复合单元结构可以实现声子晶体的多重共振, 在低频范围能打开多条共振带隙, 但受到共振单元排列方式的的影响. 由于纵向和横向局域共振模态的简并, 复合单元结构能在200 Hz以下的低频范围打开超过60%宽度的共振带隙, 最低带隙频率低至18 Hz. 这为声子晶体结构获得低频、超低频带隙提供了一种有效的方法. 关键词: 局域共振 低频带隙 复合单元 声子晶体  相似文献   

19.
The electronic structures of polyacene (PA) and its geometrical isomer, polyphenanthrene (PP) are studied on the basis of the one-dimensional tight-binding SCF-CO (self consistent field-crystal orbital) method. PA and PP can also be regarded as the laddered trans-polyacetylene and cis-polyacetylene, respectively. The geometry of each polymer is optimized from the energetic point of view. Although being energetically less stable than PP, PA has a small band gap and, furthermore, turns out to have a considerable dopant-philic nature. Hence PA will be a promising candidate as a new electrically conductive material because of its “intrinsically” metallic nature and thermal stability.  相似文献   

20.
A tight-binding calculation was presented to describe multiblock copolymers, such as [...-(PA)x-(PPP)y-...] composed of PA (polyacetylene) and PPP (poly(p-phenylene). It is found that a copolymer has a quantum well and superlattice characteristics, and evident is the effect of the composite lengths, the interfacial couplings and the electron-phonon interactions on the electronic properties of a copolymer. The quantum tunneling, the Franz-Keldysh effect and the quantum confinement can be generated under an applied electric field. These results were compared to those of traditional inorganic quantum well and superlattice systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号