首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem (P) of optimizing a linear function over the efficient set of a multiple-objective linear program serves many useful purposes in multiple-criteria decision making. Mathematically, problem (P) can be classified as a global optimization problem. Such problems are much more difficult to solve than convex programming problems. In this paper, a nonadjacent extreme-point search algorithm is presented for finding a globally optimal solution for problem (P). The algorithm finds an exact extreme-point optimal solution for the problem after a finite number of iterations. It can be implemented using only linear programming methods. Convergence of the algorithm is proven, and a discussion is included of its main advantages and disadvantages.The author owes thanks to two anonymous referees for their helpful comments.  相似文献   

2.
The paper considers an example of Wächter and Biegler which is shown to converge to a nonstationary point for the standard primal–dual interior-point method for nonlinear programming. The reason for this failure is analyzed and a heuristic resolution is discussed. The paper then characterizes the performance of LOQO, a line-search interior-point code, on a large test set of nonlinear programming problems. Specific types of problems which can cause LOQO to fail are identified.Research of the first and third authors supported by NSF grant DMS-9870317, ONR grant N00014-98-1-0036.Research of the second author supported by NSF grant DMS-9805495.  相似文献   

3.
The problem (P) of optimizing a linear functiond T x over the efficient set for a multiple-objective linear program (M) is difficult because the efficient set is typically nonconvex. Given the objective function directiond and the set of domination directionsD, ifd T 0 for all nonzero D, then a technique for finding an optimal solution of (P) is presented in Section 2. Otherwise, given a current efficient point , if there is no adjacent efficient edge yielding an increase ind T x, then a cutting plane is used to obtain a multiple-objective linear program ( ) with a reduced feasible set and an efficient set . To find a better efficient point, we solve the problem (Ii) of maximizingc i T x over the reduced feasible set in ( ) sequentially fori. If there is a that is an optimal solution of (Ii) for somei and , then we can choosex i as a current efficient point. Pivoting on the reduced feasible set allows us to find a better efficient point or to show that the current efficient point is optimal for (P). Two algorithms for solving (P) in a finite sequence of pivots are presented along with a numerical example.The authors would like to thank an anonymous referee, H. P. Benson, and P. L. Yu for numerous helpful comments on this paper.  相似文献   

4.
In this paper a bisecting search algorithm is developed for solving the problem (P) of optimizing a linear function over the set of weakly-efficient solutions of a multiple objective linear program. We show that problem (P) can arise in a variety of practical situations. The algorithm for solving problem (P) is guaranteed to find an optimal or approximately-optimal solution for the problem in a finite number of steps. Using a Fortran computer code called Conmin as an aid, we have solved ten test problems using our proposed algorithm. This preliminary computational experience seems to indicate that the algorithm is quite practical for relatively small problems.  相似文献   

5.
A method of constructing test problems with known global solution for a class of reverse convex programs or linear programs with an additional reverse convex constraint is presented. The initial polyhedron is assumed to be a hypercube. The method then systematically generates cuts that slice the cube in such a way that a prespecified global solution on its edge remains intact. The proposed method does not require the solution of linear programs or systems of linear equations as is often required by existing techniques.The author would like to thank Prof. S. E. Jacobsen for his valuable remarks on initial drafts of this paper and the referees for their constructive suggestions.  相似文献   

6.
An Interior-Point Algorithm for Nonconvex Nonlinear Programming   总被引:11,自引:0,他引:11  
The paper describes an interior-point algorithm for nonconvex nonlinear programming which is a direct extension of interior-point methods for linear and quadratic programming. Major modifications include a merit function and an altered search direction to ensure that a descent direction for the merit function is obtained. Preliminary numerical testing indicates that the method is robust. Further, numerical comparisons with MINOS and LANCELOT show that the method is efficient, and has the promise of greatly reducing solution times on at least some classes of models.  相似文献   

7.
In this paper, new classes of generalized convex functions are introduced, extending the concepts of quasi-convexity, pseudoconvexity, and their associate subclasses. Functions belonging to these classes satisfy certain local-global minimum properties. Conversely, it is shown that, under some mild regularity conditions, functions for which the local-global minimum properties hold must belong to one of the classes of functions introduced.Dedicated to R. BellmanThe authors are indebted to I. Kozma, N. Megiddo, and A. Tamir for valuable discussions and to S. Schaible for valuable remarks. This research was partially supported by the Fund for the Encouragement of Research at the Technion.  相似文献   

8.
The mapping in a nonlinear complementarity problem may be discontinuous. The integral global optimization algorithm is proposed to solve a nonlinear complementarity problem with a robust piecewise continuous mapping. Numerical examples are given to illustrate the effectiveness of the algorithm.  相似文献   

9.
A rigorous decomposition approach to solve separable mixed-integer nonlinear programs where the participating functions are nonconvex is presented. The proposed algorithms consist of solving an alternating sequence of Relaxed Master Problems (mixed-integer linear program) and two nonlinear programming problems (NLPs). A sequence of valid nondecreasing lower bounds and upper bounds is generated by the algorithms which converge in a finite number of iterations. A Primal Bounding Problem is introduced, which is a convex NLP solved at each iteration to derive valid outer approximations of the nonconvex functions in the continuous space. Two decomposition algorithms are presented in this work. On finite termination, the first yields the global solution to the original nonconvex MINLP and the second finds a rigorous bound to the global solution. Convergence and optimality properties, and refinement of the algorithms for efficient implementation are presented. Finally, numerical results are compared with currently available algorithms for example problems, illuminating the potential benefits of the proposed algorithm.  相似文献   

10.
Global optimization approach to nonlinear optimal control   总被引:1,自引:0,他引:1  
To determine the optimum in nonlinear optimal control problems, it is proposed to convert the continuous problems into a form suitable for nonlinear programming (NLP). Since the resulting finite-dimensional NLP problems can present multiple local optima, a global optimization approach is developed where random starting conditions are improved by using special line searches. The efficiency, speed, and reliability of the proposed approach is examined by using two examples.Financial support from the Natural Science and Engineering Research Council under Grant A-3515 as well as an Ontario Graduate Scholarship are gratefully acknowledged. All the computations were done with the facilities of the University of Toronto Computer Centre and the Ontario Centre for Large Scale Computations.  相似文献   

11.
The robust optimization methodology is known as a popular method dealing with optimization problems with uncertain data and hard constraints. This methodology has been applied so far to various convex conic optimization problems where only their inequality constraints are subject to uncertainty. In this paper, the robust optimization methodology is applied to the general nonlinear programming (NLP) problem involving both uncertain inequality and equality constraints. The uncertainty set is defined by conic representable sets, the proposed uncertainty set is general enough to include many uncertainty sets, which have been used in literature, as special cases. The robust counterpart (RC) of the general NLP problem is approximated under this uncertainty set. It is shown that the resulting approximate RC of the general NLP problem is valid in a small neighborhood of the nominal value. Furthermore a rather general class of programming problems is posed that the robust counterparts of its problems can be derived exactly under the proposed uncertainty set. Our results show the applicability of robust optimization to a wider area of real applications and theoretical problems with more general uncertainty sets than those considered so far. The resulting robust counterparts which are traditional optimization problems make it possible to use existing algorithms of mathematical optimization to solve more complicated and general robust optimization problems.  相似文献   

12.
A method of constructing test problems for linear bilevel programming problems is presented. The method selects a vertex of the feasible region, far away from the solution of the relaxed linear programming problem, as the global solution of the bilevel problem. A predetermined number of constraints are systematically selected to be assigned to the lower problem. The proposed method requires only local vertex search and solutions to linear programs.  相似文献   

13.
14.
Test examples for nonlinear programming codes   总被引:3,自引:0,他引:3  
The increasing importance of nonlinear programming software requires an enlarged set of test examples. The purpose of this note is to point out how an interested mathematical programmer could obtain computer programs of more than 120 constrained nonlinear programming problems which have been used in the past to test and compare optimization codes.  相似文献   

15.
Recently, researchers and practitioners have been increasingly interested in the problem (P) of maximizing a linear function over the efficient set of a multiple objective linear program. Problem (P) is generally a difficult global optimization problem which requires numerically intensive procedures for its solution. In this paper, simple linear programming procedures are described for detecting and solving four special cases of problem (P). When solving instances of problem (P), these procedures can be used as screening devices to detect and solve these four special cases.  相似文献   

16.
《Optimization》2012,61(10):1661-1686
ABSTRACT

Optimization over the efficient set of a multi-objective optimization problem is a mathematical model for the problem of selecting a most preferred solution that arises in multiple criteria decision-making to account for trade-offs between objectives within the set of efficient solutions. In this paper, we consider a particular case of this problem, namely that of optimizing a linear function over the image of the efficient set in objective space of a convex multi-objective optimization problem. We present both primal and dual algorithms for this task. The algorithms are based on recent algorithms for solving convex multi-objective optimization problems in objective space with suitable modifications to exploit specific properties of the problem of optimization over the efficient set. We first present the algorithms for the case that the underlying problem is a multi-objective linear programme. We then extend them to be able to solve problems with an underlying convex multi-objective optimization problem. We compare the new algorithms with several state of the art algorithms from the literature on a set of randomly generated instances to demonstrate that they are considerably faster than the competitors.  相似文献   

17.
This paper presents computational experience with a rather straight forward implementation of an edge search algorithm for obtaining the globally optimal solution for linear programs with an additional reverse convex constraint. The paper's purpose is to provide a collection of problems, with known optimal solutions, and performance information for an edge search implementation so that researchers may have some benchmarks with which to compare new methods for reverse convex programs or concave minimization problems. There appears to be nothing in the literature that provides computational experience with a basic edge search procedure. The edge search implementation uses a depth first strategy. As such, this paper's implementation of the edge search algorithm is a modification of Hillestad's algorithm [11]. A variety of test problems is generated by using a modification of the method of Sung and Rosen [20], as well as a new method that is presented in this paper. Test problems presented may be obtained at ftp://newton.ee.ucla.edu/nonconvex/pub/.  相似文献   

18.
This paper is concerned with the development of an algorithm for general bilinear programming problems. Such problems find numerous applications in economics and game theory, location theory, nonlinear multi-commodity network flows, dynamic assignment and production, and various risk management problems. The proposed approach develops a new Reformulation-Linearization Technique (RLT) for this problem, and imbeds it within a provably convergent branch-and-bound algorithm. The method first reformulates the problem by constructing a set of nonnegative variable factors using the problem constraints, and suitably multiplies combinations of these factors with the original problem constraints to generate additional valid nonlinear constraints. The resulting nonlinear program is subsequently linearized by defining a new set of variables, one for each nonlinear term. This RLT process yields a linear programming problem whose optimal value provides a tight lower bound on the optimal value to the bilinear programming problem. Various implementation schemes and constraint generation procedures are investigated for the purpose of further tightening the resulting linearization. The lower bound thus produced theoretically dominates, and practically is far tighter, than that obtained by using convex envelopes over hyper-rectangles. In fact, for some special cases, this process is shown to yield an exact linear programming representation. For the associated branch-and-bound algorithm, various admissible branching schemes are discussed, including one in which branching is performed by partitioning the intervals for only one set of variables x or y, whichever are fewer in number. Computational experience is provided to demonstrate the viability of the algorithm. For a large number of test problems from the literature, the initial bounding linear program itself solves the underlying bilinear programming problem.This paper was presented at the II. IIASA Workshop on Global Optimization, Sopron (Hungary), December 9–14, 1990.  相似文献   

19.
Necessary optimality conditions for bilevel set optimization problems   总被引:1,自引:0,他引:1  
Bilevel programming problems are hierarchical optimization problems where in the upper level problem a function is minimized subject to the graph of the solution set mapping of the lower level problem. In this paper necessary optimality conditions for such problems are derived using the notion of a convexificator by Luc and Jeyakumar. Convexificators are subsets of many other generalized derivatives. Hence, our optimality conditions are stronger than those using e.g., the generalized derivative due to Clarke or Michel-Penot. Using a certain regularity condition Karush-Kuhn-Tucker conditions are obtained.   相似文献   

20.
Several types of finite-dimensional nonlinear programming models are considered in this article. Second-order optimality conditions are derived for these models, under the assumption that the functions involved are piecewiseC 2. In rough terms, a real-valued function defined on an open subsetW orR n is said to be piecewiseC k onW if it is continuous onW and if it can be constructed by piecing together onW a finite number of functions of classC k .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号