首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chelating agent EDTA is widely used, and as a result is showing up widely in the aquatic environment. Here we describe a preconcentration procedure for measuring EDTA concentration in sea water samples by HPLC. The procedure consists of forming an Fe(III) complex followed by solid-phase extraction using an activated carbon cartridge. After the preconcentration, EDTA was quantified by HPLC with ultraviolet detection (260 nm). The enrichment permitted the determination of EDTA at concentrations as low as 1 nM. Good recoveries were obtained for both brackish and full-strength sea water with high repeatability (RSD < 6%). The method was applied to sea water samples taken from near the mouth of the Oyabe River in Japan.  相似文献   

2.
A new method is presented for the quantitative determination of ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) from aqueous samples without an enrichment step. It consist of the formation of the Fe(III) complexes of EDTA and DTPA, liquid-chromatography with a volatile ion-pairing agent and determination by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Limits of quantification (LOQ) of 1.0 and 0.6 microgL(-1) for EDTA and DTPA were obtained, allowing the direct injection of most aqueous environmental samples without any preceding enrichment. With a more recent mass spectrometer, the LOQ could be further decreased by almost one order of magnitude. Parallel analysis of real samples by a standardized method employing enrichment, derivatization and GC-MS analysis yielded comparable results. The method was applied to the determination of both complexing agents in several wastewater, surface water and drinking water samples, showing that EDTA is an omnipresent contaminant in partially closed water cycles.  相似文献   

3.
Anion-exchange solid-phase extraction accompanied with high-performance liquid chromatography has been developed for the determination of six kinds of aminopolycarboxylic acids (APCAs) in river water [N-(2-hydroxyethyl)ethylenediaminetriacetate (HEDTA), ethylenediaminetetraacetate (EDTA), 1,3-propanediaminetetraacetate (PDTA), diethylenetriaminepentaacetate (DTPA), 1,2-propanediaminetetraacetate (MeEDTA), and O,O′-bis(2-aminoethyl)ethyleneglycoltetraacetate (GEDTA)]. The enrichment of APCAs using an anion-exchange cartridge was successfully done by the removal of anions, which competed with APCAs in anion-exchange processes. Barium chloride solution was added to river water and the mixture was passed through On Guard II Ag and H cartridges and then a Bond Elut Jr.SAX cartridge to enrich APCAs. After elution, APCAs were analyzed on two reversed phase C30 columns connected in series and detected with ultraviolet detection. The enrichment using solid-phase extraction permitted the determination of APCAs in river water at concentrations as low as 1 nM. Good recoveries (83–111%) were obtained for each APCA by the standard addition method on three river water samples with high accuracy (RSD 1.8–9.5%). Applying this method, two kinds of APCAs, EDTA and DTPA, were determined in samples from the Oyabe and Senbo Rivers in Japan.  相似文献   

4.
Lundström U  Olin A  Nydahl F 《Talanta》1984,31(1):45-48
A method has been developed for the determination of bromide in fresh water. The analyte is enriched on the anion-exehanger Dowex 1 x 8, which exhibits a considerably greater affinity for bromide than for the major anions in fresh water. Sodium perchlorate is used as eluent and an enrichment factor of ~100 can be achieved. The eluted bromide is oxidized with peroxodisulphate to bromate, which is determined iodometrically by a previously published spectrophotometric method. The enrichment in the presence of the major components of fresh water has been studied. Only bicarbonate has been found to interfere, but this interference can be avoided by acidifying the sample with hydrochloric acid. The recovery from synthetic fresh water with ionic concentrations corresponding to 0.005 equivalent/l. and spiked with bromide was 100% at bromide concentrations larger than 50 nM (4 mug l. ) and about 90% at 10 nM. The detection limit is 1.5nM and the limit of determination 5nM for 1-litre samples.  相似文献   

5.
A new high-performance liquid chromatography (HPLC) method has been developed to detect ultra-low concentrations of bisphenol-A (BPA) (below 1 ng/L (ppt)) using column switching electrochemical detection (ECD). The results were superior to those obtained from manual pretreatment procedure with membrane stationary phase. BPA is inherently ubiquitous in the environment, including tools and solvents used for its analysis; to obtain meaningful results, therefore, the concentration of the overall BPA contamination must be below the detection limit for BPA using the analytical system. Therefore, purified water for preparing the standard BPA solution must be filtered with a hydrophobic membrane to suppress BPA background levels of contamination. In addition, we investigated methods for effectively preserving environmental water containing BPA. The addition of a small amount of ethylenediaminetetraacetic acid (EDTA) provided good recovery even after overnight storage. By employing these precautionary measures and procedures to reduce BPA contamination from the analytical procedure, we could accurately determine l(-10) ppt of BPA in environmental water samples using a column switching HPLC system.  相似文献   

6.
Liquid chromatographic (LC) type trace enrichment is coupled online with capillary gas chromatography (GC) with mass spectrometric (MS) detection for the analysis of aqueous samples. A volume of 1–10 ml of an aqueous sample is preconcentrated on a trace-enrichment column packed with a polymeric stationary phase. After cleanup with HPLC-grade water the precolumn is dried with nitrogen and subsequently desorbed with ethyl acetate. A fraction of 60 μl is introduced on-line into a diphenyltetramethyldisilazane-deactivated retention gap under partially concurrent solvent evaporation conditions and using an early solvent vapor exit. The analytes are separated and detected by means of GC–MS. The potential of the LC–GC–MS system for monitoring organic pollutants in river and drinking water is studied. Target analysis is carried out with atrazine and simazine as model compounds; the detection limits achieved under full-scan and multiple ion detection conditions are 30 pg and 5 pg, respectively. Identification of unknown compounds (non-target analysis), is demonstrated using a river water sample spiked with 168 pollutants varying in polarity and volatility.  相似文献   

7.
气泡富集-高效液相色谱法测定地表水样中微量土霉素   总被引:1,自引:0,他引:1  
熊方永  蔡云枫  张英  丁健桦 《色谱》2018,36(7):665-669
建立了气泡富集-高效液相色谱(HPLC)测定地表水样中微量土霉素的方法。采用新型样品前处理方法--气泡富集法,对水溶液中的微量土霉素进行富集,考察了气泡富集条件对富集效果的影响。研究发现,在优化的气泡富集和色谱条件下,土霉素的富集倍数可达37.06,土霉素含量测定的RSD为4.8%(n=11),LOD为0.038 mg/L。将该方法用于地表水样中土霉素的测定,平均加标回收率为101.9%。可见,气泡富集法对土霉素的富集效果好,能与色谱结合用于地表水样中土霉素的快速、灵敏、准确检测。同时,在进行样品前处理时无需任何有机溶剂,而且装置简单、成本低廉、易操作。可见气泡富集法是一种非常有研究和推广价值的绿色样品前处理方法,有望用于复杂样品中其他微量甚至痕量物质的分析。  相似文献   

8.
张勃  祁悦  高赫男  包建民 《色谱》2010,28(12):1196-1199
开发了一种简便快速的固相萃取膜(SPE disk)技术,实现了对500 mL自来水中微量丙烯酰胺的富集,采用高效液相色谱法(HPLC)完成其定性和定量测定。比较不同填料的吸附情况,选择活性炭作为丙烯酰胺的最佳吸附剂。考察了洗脱剂种类、洗脱剂体积、洗脱速率和穿透体积等条件对萃取结果的影响,优化了色谱分离条件。经膜萃取过的丙烯酰胺在0.05~0.5 mg/L质量浓度范围内,其峰面积与质量浓度的线性关系良好,相关系数为0.998,检出限为20 ng/L。该方法对不同体积、不同浓度的丙烯酰胺溶液的回收率为94.12%~100.2%,相对标准偏差为2.09%~4.51%(n=3),自来水样品的加标回收率为79.96%。该方法操作简单、快速、灵敏度高,适合对水样中丙烯酰胺的测定。  相似文献   

9.
An automation of the sample preparation and analysis of mineral oil contaminations in water was developed. The automated sample preparation was carried out according to ISO/DIS 9377-4 [1]. The standard is applicable to the determination of hydrocarbons in the boiling range of n-decane (n-C10) up to n-tetracontane (n-C40) by GC. Extraction of the sample and clean-up of the extract were performed by an autosampler with a movable head which is capable of carrying different syringes for gas and liquid handling. A GC/MS-system with a programmed temperature vaporizing (PTV) injector including the possibility of large volume injections (LVI) was employed for the analysis. The recovery of analytes was 101.8%, the repeatability 2.9% relative standard deviation (RSD). The linear range covered 0.3 to 40 mg/L oil but may be larger since no higher concentrations were measured. With an FID, being the detector of choice mentioned in the standard, it should be possible to achieve at least four orders of magnitude in the linear range. The limit of determination was found to be 0.3-0.4 mg/L, the limit of detection 0.1-0.2 mg/L [2]. Measurements of spiked deionized, bidistilled water and spiked water from a lake confirmed the accuracy of the analysis. Due to automation and miniaturization of the analysis it is possible to economize time and chemicals without loss of precision and accuracy.  相似文献   

10.
Coupling of ion chromatography with electrospray mass spectrometry (IC-MS) is a simple, sensitive and quick method for the determination of polar organic traces in water samples without derivatization. Analysis of the chelating agents ethylenediamino tetraacetate (EDTA) and diethylenetriamino pentaacetate (DTPA) in aqueous samples was done by IC-MS on an anion exchange column after simple sample preparation steps. Quantification down to a concentration level of 1 microg L(-1) even in wastewater influents and effluents was achieved utilizing 13C marked internal standards and measuring the individual [M - H+]- and stable [M - 4H+ + Fe3+]- cluster ions. The method was validated against certified, but more time consuming routine methods. Applying this method a series of several European water samples were analyzed for EDTA and DTPA indicating their nature as polar persistent pollutants.  相似文献   

11.
A preconcentration and determination method for humic and fulvic acids at trace levels in natural water samples was developed. Cloud point extraction was successfully employed for the preconcentration of humic acid (HA) and fulvic acid (FA) prior to the determination by using a flow injection (FI) system coupled to a spectrophotometric UV-Vis detector. The quantitative extraction of HA and FA within the pH range 1-12 was obtained by neutralization of the anionic charge on the humic substances with a cationic surfactant, hexadecyltrimethylammonium bromide (CTAB). This generated a hydrophobic species that was subsequently incorporated (solubilized) into the micelles of a non-ionic surfactant polyethylene glycol, tert-octylphenyl ether (Triton X-114). The FI method for HA and FA determination was developed by injection of 100 microl of the extracted surfactant-rich phase using an HPLC pump with spectrophotometric detection at 350 nm. A 50 ml sample solution preconcentration allowed an enrichment factor of 167. The limit of detection (LOD) obtained under the optimal conditions was 5 microg l(-1). The precision for ten replicate determinations at 0.2 mg l(-1) HA was 3.1% relative standard deviation (RSD), calculated from the peak heights. The calibration using the preconcentration system for HA and FA was linear with a correlation coefficient (r2) of 0.9997 at levels near the detection limits up to at least 1 mg l(-1). The method was successfully applied to the determination of HA and FA in natural water samples (river water).  相似文献   

12.
In this study, butylated hydroxytoluene (BHT) was separated and prepared from Antarctic krill. BHT was separated from the volatile oil of Antarctic krill using high performance thin layer chromatography (HPTLC) with petroleum ether/ethyl acetate/hexane (4:1:0.5, v/v/v) was used as the developing solvent. The content of BHT in volatile oil was 9.20?mg/g and the content of BHT in dried Antarctic krill was 0.35?mg/g (0.070?mg/g in frozen whole Antarctic krill). The linearity, accuracy, stability, and recovery of the analysis showed that HPTLC is the most suitable method for the determination of BHT in Antarctic krill. The BHT crude sample was obtained by scraping the separated spot in the thin layer chromatography plate, which was then analyzed using high performance liquid chromatography (HPLC). The resulting sample was identified with 96.05% purity based on the HPLC analysis. The structure of BHT was determined using gas chromatography–mass spectrometry (GC–MS). The results of the HPLC and GC–MS analysis validated the HPTLC method. BHT is a widely used antioxidant in food, pharmaceuticals, and in industrial production. The exploitation and utilization of BHT in Antarctic krill is of great economic value.  相似文献   

13.
Liquid phase microextraction with back extraction (LPME/BE) combined with high-performance liquid chromatography (HPLC) was studied for the determination of a variety of phenols in water samples. The target compounds were extracted from 2-ml aqueous sample adjusted to pH 1 (donor solution) through a microliter-size organic solvent phase (400-microl n-hexane), confined inside a small PTFE ring, and finally into a 1-microl basic aqueous acceptor microdrop suspended inthe aforementioned solvent phase from the tip of a microsyringe needle. After extracting for a prescribed time, the microdrop was taken back into the syringe and directly injected into an HPLC for detection. Factors relevant to the extraction procedure were studied. At the optimized extraction conditions, a large enrichment factor (more than 100-fold) can be achieved for most of the phenols within 35 min. The detection limit range was 0.5-2.5 microg/l for different analytes in aqueous samples. The results demonstrate the suitability of the LPME/BE approach to the analysis of polar compounds in aqueous samples.  相似文献   

14.
Automation of the GC/MS analysis of mineral oil contaminations in water   总被引:1,自引:0,他引:1  
An automation of the sample preparation and analysis of mineral oil contaminations in water was developed. The automated sample preparation was carried out according to ISO/DIS 9377–4 [1]. The standard is applicable to the determination of hydrocarbons in the boiling range of n-decane (n-C10) up to n-tetracontane (n-C40) by GC. Extraction of the sample and clean-up of the extract were performed by an autosampler with a movable head which is capable of carrying different syringes for gas and liquid handling. A GC/MS-system with a programmed temperature vaporizing (PTV) injector including the possibility of large volume injections (LVI) was employed for the analysis. The recovery of analytes was 101.8%, the repeatability 2.9% relative standard deviation (RSD). The linear range covered 0.3 to 40 mg/L oil but may be larger since no higher concentrations were measured. With an FID, being the detector of choice mentioned in the standard, it should be possible to achieve at least four orders of magnitude in the linear range. The limit of determination was found to be 0.3–0.4 mg/L, the limit of detection 0.1–0.2 mg/L [2]. Measurements of spiked deionized, bidistilled water and spiked water from a lake confirmed the accuracy of the analysis. Due to automation and miniaturization of the analysis it is possible to economize time and chemicals without loss of precision and accuracy. Received: 6 October 1999 / Revised: 6 December 1999 / Accepted: 10 December 1999  相似文献   

15.
J. F. van Staden  A. Botha 《Talanta》1999,49(5):1154-1108
A sequential injection system, based on the reaction of Cu(II) with diethyldithiocarbamate (DDTC), was developed for the determination of Cu(II) in plant food and water samples. The extraction procedure, generally used to extract the Cu(II)–DDTC complex for subsequent analysis was eliminated in this procedure. The complex was detected spectrophotometrically in aqueous solutions at 460 nm. The physical and chemical parameters depicting the system were studied to obtain optimum conditions for sample analysis. The system developed is fully computerized and able to monitor Cu(II) in samples at seven samples per hour with a relative standard deviation of <4.50%. The calibration curve is linear from 0.5–5.0 mg/l with a detection limit of 0.2 mg/l. Interferences were reduced by introducing multiple flow reversals, to increase mixing between the reagent and sample zones, and subsequently enhance working of the masking agents (EDTA/citrate).  相似文献   

16.
A study is conducted to determine the amino acid, fatty acid, and carbohydrate content of breadfruit using high-performance liquid chromatography (HPLC) and gas chromatography (GC). An HPLC method is used for the determination of amino acids and fatty acids in breadfruit. Representative amino acid samples are derivatized with phenylisothiocianate and the resulting phenylthiocarbamyl derivatives are separated on a reversed-phase column by gradient elution with a 0.05M ammonium acetate buffer and 0.01M ammonium acetate in acetonitrile-methanol-water (44:10:46, v/v). Representative fatty acid samples are derivatized with phenacyl bromide and the resulting fatty acid phenacyl esters are separated on a reversed-phase column by gradient elution with acetonitrile and water. Amino acid and fatty acid derivatives are detected by ultraviolet detection at 254 nm. The analysis of the carbohydrates in breadfruit employs a GC method. Carbohydrates are derivatized using trimethylchlorosilane and hexamethyldisilazane to form trimethylsilyl ethers. Compounds in the samples are separated by the temperature programming of a GC using nitrogen as the carrier gas. Percent recoveries of amino acids, fatty acids, and carbohydrates are 72.5%, 68.2%, and 81.4%, respectively. The starch content of the breadfruit is 15.52 g/100 g fresh weight.  相似文献   

17.
A method for the analysis of iodinated X-ray contrast media and possible metabolites in environmental water samples is presented. The method consists of a sequential solid-phase extraction followed by high-performance liquid chromatography coupled with tandem mass spectrometry for detection. The recoveries for the analytes in tap water varies between 70 and 100%. For matrix poor samples the detection limit is in the lower ng/l range. In case of native, complex samples the recoveries are lower and the parallel analysis of a spiked sample is necessary to obtain reliable data. With the presented method iodinated X-ray contrast media could be detected and quantified in a sewage treatment plant effluent, in a receiving channel and lake. In the receiving lake the concentrations are still high with values between 0.5 and 4 μg/l.  相似文献   

18.
Hashi Y  Wang TR  Du W  Lin JM 《Talanta》2008,74(4):986-991
A method using on-line enrichment and fast high-performance liquid chromatography (HPLC) with fluorescence detection has been developed and validated for the determination of polycyclic aromatic hydrocarbons (PAHs) in atmospheric particulate samples. The evaporation step for sample preparation can be eliminated since this system allows the injection of 1000microL of sample solution. PAH recoveries were between 87% and 120% for spiked atmospheric particulate samples. The limit of detection was 0.02-0.23ng/mL (signal/noise ratio=3.3). There was good linear correlation between HPLC peak area and PAH concentration, with a linear range of 0.4-40ng/mL and correlation coefficients >0.997. Furthermore, compared to conventional approaches that include an evaporation step, the method proposed is acceptable for detecting PAHs in atmospheric particulate samples.  相似文献   

19.
In this study, UV–visible spectrophotometry (UV–Vis) and high-performance liquid chromatography (HPLC) were used for simultaneous analysis of chelating agents diethylenetriamine pentaacetic acid (DTPA), ethylenediamine tetraacetic acid (EDTA), and nitrilotriacetic acid (NTA), as their metal chelates in dishwashing detergents, natural waters, and pulp mill water. The total amounts of the chelating agents in dishwashing detergents were verified by potentiometric titration with Fe(III) solution. Nickel(II) chelates were determined by UV–Vis and iron(III)chelates by HPLC and titration. Recoveries of DTPA, EDTA, and NTA from a standard mixture of analytes by UV–Vis were 107±7, 101±12 and 94±13%, respectively, and the recovery of the total amount of complexing agents was 99±4%. The limits of detection for DTPA, EDTA, and NTA were 667, 324, and 739 mol L–1, respectively. In HPLC measurements the optimized mobile phase contained 0.03 mol L–1 sodium acetate, 0.002 mol L–1 tetrabutylammonium bromide, and 5% methanol at pH 3.15 and the detection was by UV–Vis detection at 254 nm. All three complexing agents could be separated from each other in a simultaneous analysis in less than 5 min. The limits of detection were 0.34, 0.27, and 0.62 mol L–1 for DTPA, EDTA, and NTA, respectively. The total amounts of the analytes measured in the dishwashing detergents by the three techniques were found to be highly comparable (ANOVA: F=0.04, P=0.96). R2 values were 0.99 for EDTA, 0.99 for NTA, and 0.99 for all the results when UV–Vis and HPLC determinations were compared using regression lines. The UV–Vis and HPLC methods were proved to be viable also for analyses of natural and pulp mill waters. The absence of matrix interferences was verified by the standard addition technique.  相似文献   

20.
Headspace solvent microextraction (HSME) was shown to be an efficient preconcentration method for extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample solutions. A microdrop of 1-butanol (as extracting solvent) containing biphenyl (as internal standard) was used in this investigation. Extraction occurred by suspending a 3 μl drop of 1-butanol from the tip of a microsyringe fixed above the surface of solution in a sealed vial. After extraction for a preset time, the microdrop was retracted back into the syringe and injected directly into a GC injection port. The effects of nature of extracting solvent, microdrop and sample temperatures, stirring rate, microdrop and sample volumes, ionic strength and extraction time on HSME efficiency were investigated and optimized. Finally, the enrichment factor, dynamic linear range (DLR), limit of detection (LOD) and precision of the method were evaluated by water samples spiked with PAHs. The optimized procedure was successfully applied to the extraction and determination of PAHs in different water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号