首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present paper photoelectrochemical (PEC) performance of bath deposited CdS thin films based on complexing agents i.e. ammonia and triethanolamine (TEA) has been discussed. Effect of annealing has also been analyzed. The as-deposited and annealed (at 523 K for 1 h in air) films were characterized by X-ray diffraction (XRD), ultraviolet-visible (UV-vis) absorption spectroscopy, SEM, electrochemical impedance spectroscopy (EIS), and PEC properties. XRD studies revealed that the films were nanocrystalline in nature with mixed hexagonal and cubic phases. TEA complex resulted in better crystallinity. Further improvement in the crystallinity of the films was observed after air annealing. The marigold flower-like structure, in addition to flakes morphology, was observed with TEA complex, whereas for ammonia complex only flakes morphology was observed. The UV-vis absorption studies revealed that the optical absorption edge for the films with ammonia and TEA complex was around 475 nm and 500 nm, respectively. Annealing of the films resulted in red shift in the UV-vis absorption. The PEC cell performance of CdS films was found to be strongly affected by crystallinity and morphology of the films resulted due to complexing agent and annealing. The air annealed film deposited using TEA complex showed maximum short circuit current density (Jsc) and open circuit voltage (Voc) i.e. 99 μA/cm2 and 376 mV respectively, under 10 mW/cm2 of illumination. The films deposited using TEA complex showed good stability under PEC cell conditions.  相似文献   

2.
CdS doped TiO2 thin films (with CdS content=0, 3, 6, 9 and 12 at%) were grown on glass substrates. The X-ray diffraction analysis revealed that the films are polycrystalline of monoclinic TiO2 structure. The microstructure parameters of the films such as crystallite size (Dν) and microstrain (e) are calculated. Both the crystallites size and the microstrain are decreased with increasing CdS content. The optical constants have been determined in terms of Murmann's exact equations. The refractive index and extinction coefficient are increased with increasing CdS content. The optical band gap is calculated in the strong absorption region. The possible optical transition in these films is found to be an allowed direct transition. The values of Egopt are found to decrease as the CdS content increased. The films with 3 at% CdS content have better decomposition efficiency than undoped TiO2. The films with 6 at% and 9 at% CdS content have decomposition efficiency comparable to that of undoped TiO2, although they have lower band gap. The CdS doped TiO2 could have a better impact on the decomposing of organic wastes.  相似文献   

3.
Copper doped and undoped CdS films are deposited on the stainless steel strips by chemical bath deposition technique and two compartment photoelectrochemical storage cells are formed with these films as photoanodes. The results on photovoltaic energy conversion and storage of these cells are reported and discussed.  相似文献   

4.
Nanocrystalline thin films of CdS have been grown onto flexible plastic and titanium substrates by a simple and environmentally benign chemical bath deposition (CBD) method at room temperature. The films consist of clusters of CdS nanoparticles. The clusters of CdS nanoparticles in the films were successfully converted into nanowire (NW) networks using chemical etching process. The possible mechanism of the etching phenomenon is discussed. These films were examined for their structural, surface morphological and optical properties by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV-vis spectrophotometry techniques, respectively. Photoelectrochemical (PEC) investigations were carried out using cell configuration as n-CdS/(1 M NaOH + 1 M Na2S + 1 M S)/C. The film of nanowires was found to be hexagonal in structure with the preferential orientation along the (0 0 2) plane. The nanowires have widths in the range of 50-150 nm and have lengths of the order of a few micrometers. Optical studies reveal that the CdS nanowires have value of band gap 2.48 eV, whereas it is 2.58 eV for nanoparticles of CdS. Finally, we report on the ideality of junction improvement of PEC cells when CdS nanoparticles photoelectrode converted into nanowires photoelectrode.  相似文献   

5.
S. Ramesh  K. C. Wong 《Ionics》2009,15(2):249-254
Thin films of poly(methyl methacrylate) (PMMA) with lithium triflate (LiCF3SO3) were prepared by using the solution-casting method with PMMA as the host polymer. Ionic conductivity and dielectric measurements were carried out on these films. The highest conductivity for polymer electrolyte with a ratio of 65:35 was found to be 9.88 × 10−5 S cm−1, which is suitable for the production of mobile phone battery. Thermal gravimetric analysis was carried out to evaluate the thermal stability of the polymer electrolyte. The addition of salts will increase thermal stability of the polymer electrolyte.  相似文献   

6.
Cadmium sulfide thin films have been deposited on glass substrates by simple and cost effective chemical bath deposition technique. Triethanolamine was used as a complexing agent. The preparative parameters like ion concentration, temperature, pH, speed of substrate rotation and deposition time have been optimized for good quality thin films. The ‘as-grown’ films are characterized for structural, electrical, optical and photoelectrochemical (PEC) properties. The X-ray diffraction (XRD) studies reveal that the films are polycrystalline in nature. Energy-dispersive analysis by X-ray (EDAX) shows that films are cadmium rich. Uniform deposition of CdS thin films on glass substrate is observed from scanning electron microscopy (SEM) and atomic force microscopy (AFM) micrographs. Optical studies reveal a high absorption coefficient (104 cm−1) with a direct type of transition. The band gap is estimated to be 2.47 eV. The film shows n-type conduction mechanism. The photoelectrochemical (PEC) cell with CdS thin film as a photoanode and sulfide/polysulfide (1 M) solution as an electrolyte have been constructed and investigated for various cell parameters. The solar to electrical conversion efficiency (η) and fill factor (ff) are found to be 0.049% and 0.36, respectively.  相似文献   

7.
The optical, electrical, and structural properties of CdS thin films grown by chemical bath deposition and simultaneously doped with methylene blue (MB) and Er3+ were studied. Doping was achieved by adding a constant volume of an MB aqueous solution to the chemical bath while the relative volume (VR) of the Er aqueous solution varied within the range 0–10% of the total growing solution. X-ray diffractograms displayed the zincblende crystalline structure for all the CdS samples, with a remarked preferred orientation along the (111) direction. The interplanar distance among the (111) planes decreased for low doping leves of Er3+, while for high doping concentrations such distance increased to saturation. Measurements on the carriers density indicated that the CdS thin films doped with Er3+ at 6% VR presented the maximum value. In addition, the band gap energy (Eg) resulted higher for CdS:MB films with low Er3+ doping levels than for undoped films; however, Eg decreased until stabilization for increasing Er3+ concentrations.  相似文献   

8.
In this work thin CdS films using glycine as a complexing agent were fabricated by chemical bath deposition and then doped with silver (Ag), by an ion exchange process with different concentrations of AgNO3 solutions. The CdS films were immersed in silver solutions using different concentrations during 1 min for doping and after that the films were annealed at 200 °C during 20 min for dopant diffusion after the immersion on the AgNO3 solutions. The aim of this research was to know the effects of different concentrations of Ag on the optical and structural properties of CdS thin films. The optical band gap of the doped films was determined by transmittance measurements, with the results of transmittance varying between 35% and 70% up to 450 nm in the electromagnetic spectra and the band gap varying between 2.31 and 2.51 eV depending of the silver content. X-ray photoelectron spectroscopy was used to study the influence of silver on the CdS:Ag films, as a function of the AgNO3 solution concentration. The crystal structure of the thin CdS:Ag films was studied by the X-ray diffraction method and the film surface morphology was studied by atomic force microscopy. Using the ion exchange process, the CdS films’ structural, optical and electric characteristics were modified according to silver nitrate concentration used.  相似文献   

9.
ZnS overlayers were deposited on the CdS quantum dot (QD)-assembled TiO2 films, where the CdS QDs were grown on the TiO2 by repeated cycles of the in situ chemical bath deposition (CBD). With increasing the CdS CBD cycles, the CdS QD-assembled TiO2 films were transformed from the TiO2 film partially covered by small CdS QDs (Type I) to that fully covered by large CdS QDs (Type II). The ZnS overlayers significantly improved the overall energy conversion efficiency of both Types I and II. The ZnS overlayers can act as the intermediate layer and energy barrier at the interfaces. However, the dominant effects of the ZnS overlayers were different for the Types I and II. For Type I, ZnS overlayer dominantly acted as the intermediate layer between the exposed TiO2 surface and the electrolyte, leading to the suppressed recombination rate for the TiO2/electrolyte and the significantly enhanced charge-collection efficiency. On the contrary, for Type II, it dominantly acted as the efficient energy barrier at the interface between the CdS QDs and the electrolyte, leading to the hindered recombination rate from the large CdS QDs to the electrolyte and thus enhanced electron injection efficiency.  相似文献   

10.
Qian-Qian Gong 《中国物理 B》2022,31(9):98103-098103
The surface characteristics of ZnO were synthetically optimized by a self-designed simultaneous etching and W-doping hydrothermal method utilizing as-prepared ZnO nanorod (NR) array films as the template. Benefiting from the etching and regrowth process and the different structural stabilities of the various faces of ZnO NRs, the uniquely etched and W-doped ZnO (EWZ) nanotube (NT) array films with larger surface area, more active sites and better energy band structure were used to improve the photoelectrochemical (PEC) performance and the loading quality of CdS quantum dots (QDs). On the basis of their better surface characteristics, the CdS QDs were uniformly loaded on EWZ NT array film with a good coverage ratio and interface connection; this effectively improved the light-harvesting ability, charge transportation and separation as well as charge injection efficiency during the PEC reaction. Therefore, all the CdS QD-sensitized EWZ NT array films exhibited significantly enhanced PEC performance. The CdS/EWZ-7 composite films exhibited the optimal photocurrent density with a value of 12 mA· cm-2, 2.5 times higher than that of conventional CdS/ZnO-7 composite films under the same sensitization times with CdS QDs. The corresponding etching and optimizing mechanisms were also discussed.  相似文献   

11.
CdS quantum dot (QD) sensitized TiO2 nanorod array (NRA) film electrodes with different rod geometries were fabricated via a solvothermal route followed by a sequentialchemical bath deposition (S-CBD) process. By controlling the solution growth conditions, the rod geometries, especially the tip structures, of the TiO2 NRAs were tuned. The results indicated that the vertically aligned hierarchical NRAs possessed conically shaped tip geometry, which was favorable for film electrodes due to the reduced reflectance, enhanced light harvesting, fast charge-carrier separation and transfer, suppression of carrier recombination, sufficient electrolyte penetration and subsequent efficient QD assembly. CdS QD sensitized TiO2 NRA film electrodes with tapered tips exhibited an enhanced photoelectrochemical (PEC) performance, a photocurrent intensity of 5.13 mA/cm2 at a potential of 0 V vs. saturated calomel electrode, an open-circuit potential of −0.68 V vs. saturated calomel electrode and an incident photon to current conversion efficiency (IPCE) of 22% in the visible-light region from 400 to 500 nm. The effects of rod geometry on the optical absorption, reflectance, hydrophilic properties and PEC performance of bare TiO2 and CdS QD sensitized TiO2 NRA film electrodes were investigated. The mechanism of charge-carrier generation and transfer in these CdS QD sensitized solar cells based on vertically aligned TiO2 nanorods is discussed.  相似文献   

12.
采用近空间升华法(CSS)在氩/氧气氛中制备了硫化镉(CdS)多晶薄膜.利用XRD,XPS,AFM,UV-VIS光谱和四探针技术等测试和分析手段系统研究了氧对薄膜的成分、结构、光学和电学等性质的影响.结果表明,用近空间升华法制备的CdS薄膜具有六方相结构,膜层致密、均匀,平均晶粒大小约为40 nm,富硫.氧掺入后部分与镉生成氧化镉,并随着氧含量的增加,薄膜的成分有趋于化学计量比的趋势,光学带隙加宽,光暗电导比增加.此外,还利用扫描电镜(SEM)观察了CdS/CdTe断面结合光谱响应(QE)的结果讨论了氧对CdS/CdTe界面互扩散的影响.发现,随着CdS薄膜制备气氛中氧分压的升高,CdS/CdTe界面的互扩散程度降低,有利于提高器件在500—600 nm波长范围内的光谱响应.认为,氧含量的增加不但使CdS薄膜在光伏应用方面的质量得到改善,而且CdTe太阳电池器件中的CdS/CdTe界面也得到了优化. 关键词: CdS多晶薄膜 近空间升华法 窗口层 界面  相似文献   

13.
The present work reports the effect of light on the open-circuit voltage of a photoelectrochemical cell (PEC) formed of TiO2 photoanode, Pt cathode and Na2SO4 (0.35 M) aqueous solution as electrolyte. The studies included the measurements of the electromotive force (EMF) during the light-off and light-on cycles for the PEC involving photoanode that was made of both oxidised and reduced TiO2 thin films. These specimens were formed by oxidation of the titanium metal at high and low oxygen activities. This was achieved by the imposition of the gas phase of two different compositions, including air, p(O2) = 21 kPa, and the hydrogen–water vapour mixture, p(O2) = 10-10p({\rm O}_2) = 10^{-10} Pa, at 1,123 K and subsequent cooling to room temperature. The determined data indicate that the PEC formed of the oxidised specimen exhibits larger EMF and a substantially better stability in time. It is, therefore, concluded that the TiO2 obtained in air exhibits superior performance-related properties compared to the reduced specimen. The obtained experimental EMF data are considered in terms of the effect of light on the reactivity of TiO2 with oxygen and water and the related charge transfer.  相似文献   

14.
采用超声喷雾热解法制备了具有高阻抗的本征SnO2透明导电膜,将其运用在CdS层减薄了的CdS/CdTe多晶薄膜太阳电池中,对减薄后的CdS薄膜进行了XRD,AFM图谱分析,并对电池进行了光、暗I-V,光谱响应和C-V测试.结果表明,在高阻膜上沉积的减薄CdS薄膜(111)取向更明显,但易形成微孔.引入高阻层后,能消除CdS微孔形成的微小漏电通道,有效保护p-n结,改善了电池的并联电阻、填充因子和短波响应,使载流子浓度增加,暗饱和电流密度减小,从而电池性能得到改善,电池转换效率增加了14.4%. 关键词: CdTe电池 过渡层 效率  相似文献   

15.
The CdSe and Fe doped CdSe (Fe:CdSe) thin films have been electrodeposited potentiostatically onto the stainless steel and fluorine doped tin oxide (FTO) glass substrates, from ethylene glycol bath containing (CH3COO)2·Cd·2H2O, SeO2, and FeCl3 at room temperature. The doping concentration of Fe is optimized by using (photo) electrochemical (PEC) characterization technique. The deposition mechanism and Fe incorporation are studied by cyclic voltammetry. The structural, surface morphological and optical properties of the deposited CdSe and Fe:CdSe thin films have been studied by X-ray diffraction, scanning electron microscopy (SEM) and optical absorption techniques respectively. The PEC study shows that Fe:CdSe thin films are more photosensitive than that of undoped CdSe thin films. The X-ray diffraction analysis shows that the films are polycrystalline with hexagonal crystal structure. SEM studies reveal that the films with uniformly distributed grains over the entire surface of the substrate. The complete surface morphology has been changed after doping. Optical absorption study shows the presence of direct transition and a considerable decrease in bandgap, Eg from 1.95 to 1.65 eV.  相似文献   

16.
Cadmium sulphide (CdS) thin films were prepared chemical bath deposition technique. The films were doped with copper using the direct method consisting in the addition of a copper salt in the deposition bath of CdS. The doped films were annealed in air, at 250, 300 and 350 °C, for 1 h. The deposition films were characterized with X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive analysis by X-rays (EDAX) and optical properties of CdS thin films before and after Cu doping. XRD analysis shows that the films are polycrystalline in nature with cubic crystalline structure. The various parameters such as crystallite size, micro strain and dislocation density were evaluated. SEM study shows that the total substrate surface is well covered by uniformly distributed spherical shaped grains. Optical transmittance study shows the presence of direct transition with band gap energy decrease 2.5–2.2 eV.  相似文献   

17.
Fe doped CdS films are prepared using spray pyrolysis technique. All the samples are found to be of single phase and crystallized in hexagonal lattice. The X-ray diffraction peaks position of Cd1−xFexS shifts to higher angle with increasing Fe concentration indicating decrease in cell volume. The temperature dependence of resistivity follows Arrhenius behavior having lower activation energy with increasing Fe concentration in dark while there is a little variation in light. Pure CdS films are having large photoconductivity. Upon Fe incorporation, this photoconductivity gradually decreases and for concentration more than 20%, it is almost vanished. Note worthy observation is the changes seen in morphology with AFM, viz. nanorod features seen in CdS is changed to continuous nanorod like structures depicting signatures of Ostwald ripening.  相似文献   

18.
This paper reports on the characterization and application in proton batteries of corn starch-chitosan blend biopolymer electrolyte doped with NH4I as a proton provider. In this work, all electrolyte films are prepared by the solution cast method. Thermogravimetric analysis (TGA) reveals that the plasticized electrolyte is stable up to 180 °C. Differential scanning calorimetry (DSC) study shows that T g values decrease with the addition of salt and plasticizer. The X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) analyses verify the conductivity results from a previous work. The cation transference number for the highest conducting electrolyte was 0.40. The highest conducting electrolyte has been used in fabrication of primary and secondary proton batteries.  相似文献   

19.
《Current Applied Physics》2003,3(2-3):257-262
The optical absorption and photoluminescence (PL) properties of nanosize CdS clusters synthesized by chemical bath deposition technique using precursor chemicals of high purity CdCl2, thiourea and NH4Cl are presented. The crystallite sizes were controlled by the reaction rate, concentration of the reactants of the chemical bath and thickness of the film. Relative to bulk crystals, the band gap (Eg∼2.5 eV) of CdS clusters is significantly blue-shifted with decreasing cluster size. CdS nanoclusters present a mixed hexagonal/cubic structure, which indicates that CdS formation occurs primarily via “ion-to-ion” process. Scanning electron microscopic studies of CdS films revealed that the films are composed of domains, which are formed from the coalescence of smaller crystallites. The PL excitation band is interpreted as an excitation of CdS molecular levels in the interior of the cluster. Results on Ag2S alloying with the CdS nanoclusters show that surface related states of one material can be excited through states of a different interior material.  相似文献   

20.
The nonlinear refractive indices γ and nonlinear absorption coefficients of ZrO2 films doped with CdS or ZnS nanoparticles, as well as with various metals, are measured. The effects of semiconductor and metal nanoparticles and annealing on the nonlinear optical properties of films are studied. The structural parameters of films, determined by electron microscopy and x-ray dispersion spectroscopy, are compared to the optical and nonlinear optical characteristics of these media. The high magnitude of γ of the films ((3±0.6)×10?11 cm2 W? 1) is attributed to the surface enhancement effect in semiconductor nanoparticles. On the basis of Z-scan data obtained at different intensities of radiation, it is shown that the variations in γ of the ZrO2:CdS(Cr) and ZrO2:ZnS(Mn) films are related to the generation of free carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号