首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saturation transfer EPR spectroscopy (STEPR) provides a means for investigating weak spin-spin interaction between spin-labelled molecules because the spectral intensity is proportional to the effective spin-lattice relaxation time,T 1 eff. Rate equations for the spin population defferences yield equivalent results for the dependence ofT 1 eff on the physical (or chemical) and Heisenberg spin exchange rates and show thatT 1 eff depends on the extent of redistribution of saturation throughout the anisotropic spin label powder lineshape. This approach yields a particularly simple formulation for the dependence of the STEPR lineshape on slow rotational diffusion. The effects of spin exchange are readily distinguished from those of slow rotational diffusion because of the insensitivity of the STEPR lineshape in the former case. The characteristic dependence of the STEPR spectral intensity on spin concentration allows determination of the exchange rate and can be used for studying slow translational diffusion, e.g. of spin-labelled proteins. Dipolar relaxation induced by paramagnetic ions gives a linear dependence of the reciprocal spin label STEPR intensity on metal ion concentration. STEPR measurements with spin-labelled lipid molecules in gel phase membranes in the presence of Ni2+ ions yield reliable distance information and provide calibrations for use with other systems.  相似文献   

2.
A spin fluctuation theory for itinerant electrons that includes short-range magnetic order (SRMO) is used to calculate the Curie-temperature (Tc and the temperature dependence of the magnetization and the susceptibility of bulk Fe. When spin correlations are included the Curie-temperature is reduced by 9% to Tc = 2000 K. The calculated temperature-dependence of the magnetization and the magnetic susceptibility are in excellent agreement with experimental results.  相似文献   

3.
Long time effects in the spin glass Cd1-xMnxTe are investigated by measurements of the low field Faraday rotation effect. Strongly marked fluctuations are observed in the time dependence of the Faraday angle below the critical temperature. That seems to be a new effect in spin glasses.  相似文献   

4.
We calculate the nuclear magnetic resonance rate T?11 arising from the electron-nuclear hyperfine contact interaction, within the interrupted metallic strand model. The electron levels are assumed to have an energy half width Γ and a mean spacing Δ0 and it is assumed that all segments have the same nuclear spin temperature. In the limit Γ ? Δ0, T?11 has nearly the same behaviour for kT ? Δ0 and kT?Δ0. It is proportional to temperature but has a Lorentzian magnetic field dependence with halfwidth H= Γ/μB. At low fields it is enhanced over the value for a normal metal by the factor Δ0/Γ.This anomalous behaviour arises from the suppression of electron spin flip processes by a magnetic field and should always occur when electronic states are localised, that is when there is a locally discrete electron energy spectrum. Therefore it may be relevant not only to certain linear chain conductors but to other cases of electron localisation.The present model provides an additional possible source of frequency dependence of T1 in linear chain materials. In certain materials especially those containing defects, it may be more appropriate than the currently accepted mechanism which involves electron spin diffusion in one dimension.  相似文献   

5.
We present measurements of the critical behaviour of the EPR linewidths at frequencies 9.21 and 35.5 GHz. In the exchange critical region above Tc (4πx ? 1) the strong field dependence of the linewidths is observed, even when the field variation of susceptibility x is small. This phenomenon is explained by the spin diffusion effect on the linewidth. The spin diffusion coefficients D for CdCr2Se4 and CdCr2S4 are determined from the linewidths data. The temperature dependence D is found to be consistent with the predictions of the dynamical scaling theory.  相似文献   

6.
Production amplitudes for the f0 meson and for the lower spin background are obtained from an analysis of the angular distribution moments in 17 GeV/cπ?p → π?π+n data. The energy dependence is studied by also analysing data at 4 GeV/c. The exchange mechanisms responsible are discussed and compared with those for πN → ?N.  相似文献   

7.
8.
The c-axis magnetostriction, λc, has been measured in terbium-50% holmium in fields up to 2 T between the Néel and Curie temperatures. The magnitude and temperature dependence of λc are similar to those previously reported for dysprosium. Detailed strain measurements between the critical field, Hc, which destroys the antiferromagnetic spiral spin structure and the field induced ferromagnetic phase show that the extent of an intermediate fan phase is more limited than previous theoretical analyses have predicted. The difference between the experimental data and strains calculated from theory can be explained only in part by the influence of magnetostry calline anisotropy.  相似文献   

9.
Electron spin resonance (ESR) study was carried out on La0.67Ca0.33Mn1−xFexO3 (x=0.0, 0.04) samples. The temperature dependence of the ESR spectra indicates the presence of phase separation above and below TC in x=0.0 and 0.04 sample, respectively. The increase of the g-value in the high-temperature region indicates the existence of local spin correlations even in the paramagnetic state. The activation energy obtained from both the temperature dependence of the ESR intensity and linewidth exhibits a smaller value in the Fe-doped sample. Our study suggests that the ferromagnetic spin correlations would be significantly weakened by a slight doping of Fe ions on Mn sites.  相似文献   

10.
Angle-selection experiments of a spin soliton in randomly oriented ladder polydiacetylene were carried out by pulsed electron paramagnetic resonance (EPR) at W-band. EPR measurement using 94 GHz microwaves increased the difference in the resonance field due tog anisotropy of the spin soliton to allow the orientation dependence of transient nutation, electron nuclear double resonance (ENDOR) and spin relaxations to be investigated. The shape of theg anisotropy-resolved nutation spectrum was discussed on the basis of the EPR transition moments and the differences between spin relaxation times. Reliable assignments of hyperfine couplings to the β protons (Hβ) of the alkyl side chains were achieved with the support of W-band ENDOR measurements. No significant orientational dependence in theT 1 andT 2 processes was found in terms of isotropy of the Hβ-hyperfine interaction.  相似文献   

11.
The S = 1 quasi-one-dimensional Heisenberg antiferromagnet [Ni(C5H14N2)2N3](PF6), abbreviated as NDMAP, has been studied by electron spin resonance in a magnetic field above the critical field (H c). We studied angular and frequency dependences of spin excitations. The angular dependence of the spin excitations in the vicinity of H c is explained well by a phenomenological field theory, but the agreement between the experiment and the calculation is not satisfactory above 10 T. In high magnetic fields above 15 T, we obtained some characteristic spin excitations which are well explained by conventional antiferromagnetic resonance modes. These results suggest that the spin excitations change from a quantum state to a classical one due to the suppression of quantum fluctuations by high magnetic fields.  相似文献   

12.
Surface magnetic anisotropy energy was studied for (Gd0.26Co0.74)0.96Mo0.04 and (Gd0.29Co0.71)0.96Mo0.04 thin amorphous films by means of microwave spectroscopy at the X-band within the temperature range 4–295 K. Excitations of surface spin waves were observed in the spin wave resonance spectra. The experiment was performed in a rotating external magnetic field. The angular dependence of the resonance field for the uniform mode (spin wave vector k=0) and the surface mode made it possible to determine the surface uniaxial anisotropy constant Ks and its temperature dependence. An inhomogeneity of the saturation magnetization Ms within a close-to-surface layer of thickness d can generate the surface anisotropy energy with anisotropy constant Ks given by the formula: Ks=4πMbs (MbsMsurfs)d, where the indexes b and surf correspond to the bulk and surface values, respectively. The temperature dependence of Ks calculated by means of the formula agrees qualitatively with temperature dependence of Ks found in the experiment.  相似文献   

13.
The field dependence of spin and orbital magnetic moments of Fe in L10 FePt magnetic thin films was investigated using X-ray magnetic circular dichroism (XMCD). The spin and orbital moments were calculated using the sum rules; it was found that the spin and orbital moment of Fe in L10 FePt films are ∼2.5 and 0.2 μB, respectively. The relative XMCD asymmetry at Fe L3 peak on the dependence of applied field suggested that the majority magnetic moment of L10 FePt films resulted from Fe.  相似文献   

14.
We have analyzed the field dependence of the magnetic relaxation time T1 in solid He3 and find that the experimental data are in good agreement with the theory of Blume and Hubbard for the time dependence of the spin correlation function.  相似文献   

15.
We have analyzed a large set of mean energies and angular anisotropies for evaporative4He emission to obtain barriers to evaporation,B. These exit channel barriers are often substantially smaller than the corresponding empirical s-wave fusion barriersE 0. The differences (E 0-B) are interpreted as indicators of the extent of distortion of the emitters. These distortions have in turn been characterized by the deformation parameter for a spheroid α20. ForZ=80 the dependence ofB or {α}20 on spin is somewhat suggestive of the superdeformed shapes predicted by the liquid drop model. ForZ>70 significant distortions are indicated for emitters of both large and small spin.  相似文献   

16.
Continuous-wave spectra at W-band of four triarylmethyl (trityl) radicals at 100 K in 1∶1 water-glycerol exhibit rhombic electron paramagnetic resonance spectra. The rigid-lattice line widths at W-band are only 3 to 5 times larger than at X-band or S-band, and fluid-solution line widths are much narrower than those for rigid lattice, which indicates that unresolved anisotropic nuclear hyperfine couplings make significant contributions to the rigid-lattice line widths. Spin-flip lines are observed in glassy-solution spectra at X-band and S-band, but not at W-band or 250 MHz. At 100 KT m is dominated by spin diffusion of solvent protons and is independent of microwave frequency. Between about 130 and 170 K, 1/T m for trityl-CH3 is enhanced by rotation of the methyl groups at a rate comparable to inequivalences in the hyperfine interaction. Motional averaging of anisotropic interactions enhances spin echo dephasing between about 200 and 300 K. The temperature dependence of 1/T 1 is similar for the four radicals and is consistent with assignment of the Raman process and a local mode as the dominant relaxation processes. The similarity inT 1 values at W-band and X-band supports this assignment.  相似文献   

17.
Hysteresis loop and ac susceptibility measurements were performed on three series of amorphous alloys: (AwB1-w)75P16B6Al3, where (A, B) are (Fe, Ni), (Co, Ni) and (Fe, Mn). Upon cooling, low w alloys undergo paramagne t to spin glass transitions. Alloys with higher w first experience a Curie transition to a ferromagnetic state, and then a spin freezing transition to a spin glass state. the T dependence of the width of the ac hysteresis loop is used to determine the spin freezing transition temperature. A magnetic phase diagram is presented for each alloy series and the value of w required for ferromagnetism, wC, is determined. When measured in the presence of small constant fields, the ac susceptibility of alloys with w just above wC has maxima near both transition temperatures. The field and temperature dependences of the peaks are explained by scaling arguments, used to determine the critical exponent δ for the Curie transition, and suggest that a similar scaling law holds for the ferromagnet to spin glass transition.  相似文献   

18.
The temperature and angular dependence of the X-band electron spin resonance (ESR) and51V nuclear magnetic resonance (NMR) spectra have been measured in a recently discovered Haldenegap system, PbNi2-xMgxV2O8 (0≤x≤0.24). The angular dependence of the ESR signal suggests that both the spin diffusion as well as the magnetic anisotropy determine the electronic spin correlation functions. However, in doped samples the magnetic anisotropy increasingly dominates the spin dynamics on cooling. The huge broadening of the51V NMR spectra in doped samples at low temperatures provides evidence for localized magnetic moments in the vicinity of the Mg impurities. Locally distorted structure around each Mg impurity may slightly modify the magnetic interactions and be potentially responsible for the antiferromagnetic ordering (belowT N≈ 3.5K) in doped compositions.  相似文献   

19.
《Nuclear Physics A》1988,487(2):370-396
The γ-ray multiplicities of the fragments from a number of 4He-induced fission reactions have been measured as a function of fragment emission angle. The value of Mγ is found to vary with angle in qualitative agreement with the predictions of statistical models of fission-fragment angular distributions. The observed variation is rather weak, on the order of 5%. The data are compared with several models. Calculations assuming a rigidly rotating, transition-state nucleus predict a much stronger angular dependence of the fragment spin than indicated by the data. The agreement is significantly improved if a fragment-spin enhancement effect is included in these calculations. The fragment spins are explored within the framework of the statistical scission model and the collective mode model. Both of these models predict large fragment spins and thus a relatively weak angular dependence of the total fragment spin. Neither model provides a completely satisfactory explanation of the data. Depending on the assumptions made in the calculations, the models either predict too strong an angular dependence of the total fragment spin or spins which seem incompatible with Mγ.  相似文献   

20.
Optical pumping withD 2-light provides an excellent means for studying collisional relaxation in the excited2 P 3/2-state of alkali atoms. Collisional relaxation of orientations in that state very sensitively affects the spin orientation in the ground state. All these orientations may be easily created by absorption of σ+- or σ{?{-light. At a certain strength of the relaxation realized by a certain buffer gas pressure, the spin orientation in the ground state even vanishes, providedD 2-light is used for excitation. The condition for this situation is derived from the set of rate equations which governs the evolution of all the orientations involved. These conditions very markedly depend on the nuclear spin valueI. The validity of this dependence has been checked by magnetic decoupling of the nuclear spin and observing the associated shift of the pressure for vanishing spin orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号