首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
New ternary silicides (RE,Th,U) Os2Si2 have been synthesized from the elements. All the compounds (RE= Y,La,Ce,Pr,Nd,Sm,Gd,Tb,Dy,Ho,Er,Tm,Yb, Lu) were found to be isotypic and to crystallize with the ordered BaAl4-type of structure (ThCr2Si2-type). Magnetic properties of these alloys — studied in the temperature range 1.5<T<1100 K — reveal a typical Van Vleck paramagnetism of free RE3+ ions at temperatures higher than 300 K. The observed effective paramagnetic moment of CeOs2Si2, μ(eff)=0.98 BM, is compatible with a rather low concentration (15%) of Ce3+. The effective moment of SmOs2Si2, μ(eff)=0.47 BM, is in reasonable agreement with a Hund's rule J=52 ground level for free Sm3+. For temperatures above 25 K, the magnetic susceptibility as a function of temperature corresponds to the Van Vleck behavior for free Sm3+ (closely spaced multiplet, J=52,J=72. Magnetic ordering temperatures of REOs2Si2 silicides are generally below 42 K. (Pr,Nd,Ho,Er,Tm) Os2Si2 exhibit ferromagnetic ordering whereas (Sm,Gd, Tb,Dy) Os2Si2 show antiferromagnetic behavior. Above 1.8 K none of the samples was found to be superconducting.  相似文献   

2.
Rare earth iron silicides and germanides of the RFe2Si2 or RFe2Ge2 type with R = La, Ce, Pr, Nd, Sm, Gd and Dy were measured for their magnetic susceptibility. The silicides and germanides of Nd and Gd are antiferromagnetically ordered below a Neel point of, respectively, 11 and 7°K for the silicides and 13 and 11 for the germanides. The Nd sublattice under-goes a spin-flop transition which at 4.2°K is at 11 KOe. Although the Fe sublattice is diamagnetic, all the samples showed a weak ferromagnetic ordering below a temperature of about 700°K. The ratio between the dia- and ferromagnetic phases is 94:6 per cent in the silicides and 80:20 in the germanides, as determined by Mössbauer spectroscopy and supported by magnetization measurements.  相似文献   

3.
Five Na2SO4:RE3+ phosphors activated with rare-earth (RE) ions (RE3+=Ce3+, Sm3+, Tb3+, Dy3+ and Tm3+) were synthesized by heating natural thenardite Na2SO4 from Ai-Ding Salt Lake, Xinjiang, China with small amounts of rare-earth fluorides, CeF3, SmF3, TbF3, DyF3 and TmF3, at 920 °C in air. The photoluminescence (PL) and optical excitation spectra of the obtained phosphors were measured at 300 and 10 K. In the PL spectrum of Na2SO4:Ce3+ at 300 K, two overlapping bands with peaks at 335 and 356 nm due to Ce3+ were first observed. Narrow bands observed in PL and excitation spectra of Na2SO4:RE3+ (RE3+=Sm3+, Tb3+, Dy3+ and Tm3+) phosphors were well identified with the electronic transitions within the 4fn (n=5, 8, 9 and 12) configurations of RE3+. The existence of excitation bands with high luminescence efficiency at wavelengths shorter than 230 nm is characteristic of Na2SO4:RE3+ (RE3+=Sm3+, Tb3+, Dy3+ and Tm3+) phosphors. The obtained results suggest that these phosphors are unfavorable as the phosphor for usual fluorescence tubes, i.e., mercury discharge tubes, but may be favorable as the phosphor for UV-LED fluorescent tubes and as cathodoluminescence, X-ray luminescence and thermoluminescence phosphors.  相似文献   

4.
Magnetic properties of nine RE2Au compounds have been studied in fields of up to 19 kOe in the temperature range 4.2K–300K. It has been found that all compounds are paramagnetic at room temperature except Gd2Au. The compounds with Pr, Nd, Ho, Er and Tm exhibit Curie-Weiss behaviour with paramagnetic moments in close agreement with those expected for the free RE3+ ion. The moment of gold was found to be zero. The compounds with Pr, Nd, Tb, Dy, Er and Tm are antiferromagnetic at low temperatures. It appears that Ho2Au is ferromagnetically ordered below 4.5 K. No evidence for magnetic ordering was found for Y2Au. The compound with Tb exhibits metamagnetic behaviour.  相似文献   

5.
Ternary silicides (RE, Th, U)Ru2Si2 have been synthesized from the elements. All the compounds (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) were found to be isotypic and to crystallize with the structure type of ThCr2Si2 (ordered derivative of the BaAl4-type). The magnetic behavior of these alloys was studied in the temperature range 1.5 K < T < 1100 K. Magnetic susceptibilities at temperatures T > 300 K closely follow a typical Van Vleck paramagnetism of free RE3+-ions. In the case of CeRu2Si2 susceptibilities are well described for 20 K < T < 1100 K by a Van Vleck paramagnetism of widely spaced multiplets; the observed effective paramagnetic moment μeff = 2.12 BM indicates a high percentage (85%) of Ce3+. SmRu2Si2 yields an effective moment μeff = 0.54 BM, which compares reasonably well with the Hund's rule J = 5/2 ground level for free Sm+ and a low-lying excited level with J = 7/2. For temperatures T > 15 K the magnetic susceptibility as a function of temperature follows the “Van Vleck behavior” for free Sm3+. At low temperatures ferromagnetic ordering was encountered for (Pr, Nd, Ho, Er, Tm)Ru2Si2, whereas antiferromagnetic ordering was observed for (Sm, Gd, Tb, Dy)Ru2Si2. The ordering temperatures are generally below 55 K. No superconductivity was found for temperatures as low as 1.8 K.  相似文献   

6.
Magnetometric and neutron diffraction studies of polycrystalline NdCo2GE2, ErCo2Ge2 and PrFe2Ge2 compounds were carried out in the temperature range between 4.2 and 300 K. All samples are antiferromagnetic with Néel temperature 26.5, ~ 4.2 and 13 K, respectively. The RECo2Ge2 compounds have collinear antiferromagnetic order of +?+? type. For PrFe2Ge2 a sinusoidal magnetic structure is observed. Magnetic moment is localized on RE atoms only and is equal to that of RE3+ free ion value. In ErCo2Ge2 the magnetic moment of Er atoms is perpendicular to the c-axis, whereas for remaining compounds it is parallel to the c-axis.  相似文献   

7.
Ternary silicides (RE, U, Th)Pt2Si2 have been prepared from the elements. All the compounds (RE= Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and U, Th) were found to be isotypic and crystallize with the primitive tetragonal CePt2Si2-type structure closely related to the CaBe2Ge2-type. The magnetic properties of these alloys were studied in the temperature range 1.5 K < T < 1100 K and in fields up to 1.3 T revealing a typical Van Vleck paramagnetism of free RE3+-ions for temperatures T > 200 K. A nonmagnetic ground state is reflected from the magnetic susceptibility data of CePt2Si2, which are interpreted in terms of interconfiguration fluctuations (ICF). The magnetic results of SmPt2Si2 (μeff = 0.7 BM) compare well with the ideal Van Vleck behavior of Sm3+ ions with a J = 52 ground state and a low-lying excited first level J = 72. At temperatures below 40 K antiferromagnetic ordering is found for (Gd, Tb, U)Pt2Si2; whereas in case of (Dy, Ho, Er, Tm)Pt2Si2 the onset of ferromagnetism is indicated below 4 K. None of the samples exhibited a superconducting transition above 1.8 K.  相似文献   

8.
Highly crystalline CoFe1.9RE0.1O4 ferrite nanoparticles, where RE=La, Ce, Nd, Sm, Eu, Gd, Tb, and Ho, have been synthesized by forced hydrolysis in polyol. X-ray diffraction (XRD), transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS), 57Fe Mössbauer spectrometry, Co K-edge X-ray absorption spectroscopy and magnetic measurements using a SQUID magnetometer were employed to investigate the effect of the substitution RE3+ ions for Fe3+ ones on the structure, the microstructure, the chemical homogeneity, and the magnetic properties of the cobalt ferrite system. All the produced particles are superparamagnetic at room temperature. Nevertheless, the substitution causes reduction of the blocking temperature which is mainly ascribed to partial cation exchange among the spinel-like sublattices of CoFe2O4 induced by the insertion of the relatively large RE3+ ions. The low-temperature saturation magnetization and coercivity appear to be greatly affected by the nature of RE3+ ions—maxima values were found for Gd3+ and Eu3+, respectively.  相似文献   

9.
Structural, morphological and optical properties of rare earth ions (RE3+=Sm3+ or Dy3+) activated Ca3Ga2Si3O12 (CaGaSi) phosphors synthesized by the sol-gel method are reported. XRD results confirmed the cubic phase structure of RE3+:CaGaSi phosphors. From the SEM images of RE3+:CaGaSi phosphors, it is observed that the particles are agglomerated. Photoluminescence spectra of Sm3+:CaGaSi phosphors have shown bright orange red emission at 598 nm (4G5/26H7/2) with an excitation wavelength of λexci=401 nm. In the case of Dy3+:CaGaSi phosphors bright yellow emission has been observed at 574 nm (4F9/26H13/2) with λexci=451 nm. From the PL spectral results, the rare earth ion concentration of CaGaSi phosphors is optimized.  相似文献   

10.
Thermochemistry in the decomposition of gadolinium di-oxycarbonate, Gd2O2CO3(s) and neodymium di-oxycarbonate, Nd2O2CO3(s) was studied over the temperature region of 774-952 K and 775-1105 K, respectively. The equilibrium properties of the decomposition reactions were obtained by tensimetric measurement of the CO2(g) pressure over the biphasic mixture of RE2O2CO3(s) and RE2O3(s) at different temperatures (RE=Gd, Nd) and also by thermogravimetric analysis of the decomposition temperature at different CO2 pressures. The temperature dependence of the equilibrium pressure of CO2 thus measured could be given by
ln pCO2/Pa (±0.13)=−22599.1/T+35.21 (774≤T (K)≤952) for Gd2O2CO3 decomposition and
ln pCO2/Pa (±0.19)=−23824.7/T+33.14 (775≤T (K)≤1105) for Nd2O2CO3 decomposition.
From the above vapor pressure expressions, the median enthalpy and entropy of the decomposition of the oxycarbonates were calculated by the second law analysis and their thermodynamic stabilities were derived. The results are discussed in the light of available thermochemical data of the compounds.  相似文献   

11.
Magnetic properties of rare-earth intermetallics RE2Ni7 (RE=Dy, Ho) are reported. Both the samples undergo two successive magnetic transitions at Th (paramagnetic to ferromagnetic) and Tl (spin reorientation) below 100 K. The transitions are found to be second order in nature as evident from the Arrot plot analysis. Large reversible magnetocaloric effect (MCE) was observed at low temperature in the studied samples. The maximum value of the magnetic entropy change in Ho2Ni7 is found to be −12.5 J/kg K (for 0 to 50 kOe of field change) around 25 K with a high relative cooling power (RCP) of 534 J/kg. The Dy counterpart also shows moderately large values of MCE (−7.3 J/kg K) and RCP (475 J/kg) around the magnetic transition region for similar change in the magnetic field. RE2Ni7 compounds can be promising materials for magnetic refrigeration in the temperature range of helium and hydrogen liquefaction.  相似文献   

12.
Calcium lanthanide oxyborate doped with rare-earth ions LnCa4O(BO3)3:RE3+ (LnCOB:RE, Ln=Y, La, Gd, RE=Eu, Tb, Dy, Ce) was synthesized by the method of solid-state reaction at high temperature. Their fluorescent spectra were measured from vacuum ultraviolet (VUV) to visible region at room temperature. Their excitation spectra all have a broadband center at about 188 nm, which is ascribed to host absorption. Using Dorenbos’ and Jφrgensen's work [P. Dorenbos, J. Lumin. 91 (2000) 91, R. Resfeld, C.K. Jφrgensen, Lasers and Excite States of Rare Earth [M], Springer, Berlin, 1977, p. 45], the position of the lowest 5d levels E(Ln,A) and charge transfer band Ect were calculated and compared with their excitation spectra.Eu3+ and Tb3+ ions doped into LnCOB show efficient luminescence under VUV and UV irradiation. In this system, Ce3+ ions do not show efficient luminescence and quench the luminescence of Tb3+ ions when Tb3+ and Ce3+ ions are co-doped into LnCOB. GdCOB doped with Dy3+ shows yellowish white light under irradiation of 254 nm light for the reason that Gd3+ ions transfer the energy from itself to Dy3+. Because of the existence of Gd3+, the samples of GdCOB:RE3+ show higher excitation efficiency than LaCOB:RE3+ and YCOB:RE3+, around 188 nm, which indicates that the Gd3+ ions have an effect on the host absorption and can transfer the excitation energy to the luminescent center such as Tb3+, Dy3+ and Eu3+.  相似文献   

13.
The spectroscopic properties in UV-excitable range for the phosphors of Sr3La2(BO3)4:RE3+ (RE3+=Eu3+, Ce3+, Tb3+) were investigated. The phosphors were synthesized by conventional solid-state reactions. The photoluminescence (PL) spectra and commission international de I'Eclairage (CIE) coordinates of Sr3La2(BO3)4:RE3+ were investigated. The f-d transitions of Eu3+, Ce3+ and Tb3+ in the host lattices are assumed and corroborated. The PL and PL excitation (PLE) spectra indicate that the main emission wavelength of Sr3La2(BO3)4:Eu3+ is 611 nm, and Sr3La2(BO3)4:Ce3+ shows dominating emission peak at 425 nm, while Sr3La2(BO3)4:Tb3+ displays green emission at 487, 542, 582 and 620 nm. These phosphors were prepared by simple solid-state reaction at 1000 °C. There are lower reactive temperature and more convenient than commercial phosphors. The Sr3La2(BO3)4:Tb3+ applied to cold cathode fluorescent lamp was found to emit green light and have a major peak wavelength at around 542 nm. These phosphors may provide a new kind of luminescent materials under ultraviolet excitation.  相似文献   

14.
Effect of RE3+ as a co-dopant in long-lasting phosphorescence CdSiO3:Mn2+ (RE=Y, La, Gd, Lu) has been investigated. A longer orange emitting phosphorescence phenomenon was observed in the co-doped CdSiO3:Mn2+,RE3+ phosphors after exciting with ultraviolet (UV) light. The luminescence properties, including photoluminescence (PL) spectra and thermoluminescence (TL) spectra, as well as the afterglow decay curves, were studied. The results revealed that one of the origins of the improvement is due to nonequivalent substitution to produce more e-traps, and energy transfer from Gd3+ to Mn2+ to boost the performance of CdSiO3:Mn2+,Gd3+. Role of RE3+ co-doped into CdSiO3:Mn2+ matrix and the possible long-lasting phosphorescence process are discussed in this paper.  相似文献   

15.
The thermo-luminescence (TL) of rare earth ions RE3+ (RE=Ln, excluding Pm, Eu and Lu) co-doped phosphors CaGa2S4:Eu2+, RE3+ was studied between room temperature and 300 °C, and 3D thermo-luminescence of the phosphors were measured from room temperature to 400 °C. The basic material CaGa2S4:Eu2+, showed at least two bands in the TL glow curve. Changing the auxiliary activator RE3+ (rare earth ion), intensities and the positions of the TL glow curve peaks were affected significantly. For the phosphors with long afterglow, auxiliary activator such as Ce3+, Pr3+, Gd3+, Tb3+, Ho3+, or Y3+ created some new defects in these compounds at lower trap levels and enhanced their TL intensities. The Nd3+ or Er3+ auxiliary activator only enhanced TL intensities to a low extent, so these two phosphors have short persistent luminescence at room temperature. TL intensities of La3+, Sm3+, Tm3+ or Yb3+ co-doped phosphors were suppressed greatly and no afterglow was shown. The relationship between auxiliary activators and corresponding thermo-luminescence curves of phosphors CaGa2S4:Eu2+, RE3+ are discussed in detail. According to our results, suitable activation energy and enough high corresponding trap density are necessary for the phosphor with long afterglow.  相似文献   

16.
A neutron diffraction study of polycrystalline RECo2Si2 intermetallics (RE = Pr, Nd, Tb, Ho, Er) carried out at liquid helium temperature shows the presence of a collinear antiferromagnetic ordering of +?+? type. Magnetic moment is localized on RE ions only and amounts to the RE3+ free ion value. In ErCo2Si2 the magnetic moment is normal to the tetragonal unique axis, whereas in the remaining compounds the magnetic moment is aligned along it. Néel points were determined from the temperature dependence of magnetic peak heights.  相似文献   

17.
The thermoluminescence (TL) of rare earth (RE) activated sulfates of Cd, Sr and Ba was studied above room temperature. Many of the phosphors prepared exhibit an extremely bright TL following X-irradiation (most notably with Sm, Eu, Tb, Dy and Tm dopants), having an efficiency comparable to that of the highest sensitivity phosphors available for TL dosimetry, and exhibiting activator-induced glow peaks between 405 and 480°K. In a given lattice, the RE3+ ions produce a characteristic glow peak at the same temperature (independent of the particular RE ion), whereas Eu2+ produces a single glow peak at a different temperature. A decrease in glow peak temperature with increasing interatomic spacing was observed in the homologous SrSO4-BaSO4 system - this shift being most pronounced in the Eu2+ -doped materials. TL emission spectra were obtained for trivalent Sm, Tb, Dy and Tm and for divalent Eu in these sulfates (and also in CaSO4).  相似文献   

18.
We present the magnetic and thermal properties of a series of compounds RE2Al3Si2 for RE=Dy, Ho, Er, and REAlSi for RE=Pr, Ce. The 2–3–2 family crystallizes with themonoclinic Y2Al3Si2-type structure while the 1–1–1 family crystallizes in the body-centered tetragonal α-ThSi2-type structure. The measurements were done on single crystals, grown using high-temperature flux technique and molten Al as a solvent . Susceptibility and heat capacity data were taken from 1.8 to 200 K, from the heat capacity data, the isothermal magnetic entropy change was obtained. Our results indicate signal oscillations in magnetocaloric properties for those compounds, in particular, Dy2Al3Si2 that shows an anomaly that can be associated with a spin reorientation. Similar results are known for some Dy discilicides and dialluminades.  相似文献   

19.
Photoluminescent phosphors CaGa2S4: Eu2+, RE3+ (RE3+ including all rare earth ions except for Sc3+, Pm3+, Eu3+ and Lu3+) were prepared by sintering at high temperature in a reductive atmosphere, and their luminescent properties were studied intensively. The influences of co-doping rare earth ions on their luminescent properties were also investigated. No remarkable differences were found from excitation spectra of co-doped phosphors CaGa2S4: Eu2+, RE3+ in contrast with that of phosphor CaGa2S4: Eu2+, but there were a few differences in emission spectra of Ce3+, Pr3+ or Ho3+ co-doped phosphors. Phosphors CaGa2S4: Eu2+, RE3+ (RE=Ce, Pr, Gd, Tb, Ho and Y) had persistent afterglow, and very short afterglow was shown for Nd3+ or Er3+ co-doped phosphors, but no long afterglow appeared when auxiliary activator was La3+, Sm3+, Dy3+, Tm3+ or Yb3+. Among the phosphors with long-lasting phosphorescence, in our experiments, CaGa2S4: Eu2+, Ho3+ had the longest and the highest brightness long yellow afterglow. Thermo-luminescence of all co-doped phosphors was measured to find the answer of different influences from different rare earth auxiliary activators.  相似文献   

20.
RE3+-activated α- and β-CaAl2B2O7 (RE=Tb, Ce) were synthesized with the method of high-temperature solid-state reaction. Their VUV excitation and VUV-excited emission spectra are measured and discussed in the present article. The charge transfer band of Tb3+ and Ce3+ is respectively calculated to be at 151±2 and 159±3 nm. All the samples show an activator-independent excitation peak at about 175 nm and an emission peak at 350-360 nm ascribed to the host absorption and emission band, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号