首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutron diffraction and magnetization study of polycrystalline NdRh2Si2 and ErRh2Si2 was performed in the temperature range from 4.2 to 293 K. Both compounds are of ThCr2Si2 type crystal structure and exhibit antiferromagnetic ordering below TN = 53 K and TN = 12.8 K respectively. The magnetic structure wave vector is τ = [0, 0, 1].  相似文献   

2.
Crystallographic and magnetic properties of PrMn2Si2, NdMn2Si2, YMn2Si2 and YMn2Ge2 intermetallics were studied by X-ray, neutron diffraction and magnetometric measurements. The crystal structure of all four compounds was confirmed to be body-centered tetragonal (space group I4/mmm). All were found to be antiferromagnetic with Néel points at 368, 380, 460 and 395 K respectively. Neutron diffraction results indicate that their magnetic structure consists of ferromagnetic layers composed of Mn ions piled up along the c-axis. Each layer is antiferromagnetically coupled to adjacent layer. The magnetic space group is Ip4/mmm′. No magnetic ordering of the R sublattice was observed at 1.8 K in the case of R = Pr and Nd.  相似文献   

3.
Neutron diffraction studies and magnetic measurements on the compounds TbNi2Si2 (1), HoCo2Si2 (2) and TbCo2Si2 (3) revealed a collinear antiferromagnetic order below TN = 10 ± 1 K (1), TN = 13 ± 1 K (2) and TN = 30 ± 2 K (3) with the rare earths moments oriented along the c-axis [m0 = 8.8 ± 0.2 μB (1), m0 = 8.1 ± 0.2 μB (2), m0 = 8.8 ± 0.2 μB (3)] and the corresponding wavevector are k = [12120] (1) andk = [ 0 0 1] (2) (3). The magnetic structure of the compounds HoCo2Si2 and TbCo2Si2 consists of ferromagnetic layers perpendicular to the c-axis coupled antiferromagnetically (+?+?) while for TbNi2Si2 the ordering within (0 0 1) plane is antiferromagnetic and the planes (0 0 1) are indeed decoupled.  相似文献   

4.
A neutron diffraction study of polycrystalline RECo2Si2 intermetallics (RE = Pr, Nd, Tb, Ho, Er) carried out at liquid helium temperature shows the presence of a collinear antiferromagnetic ordering of +?+? type. Magnetic moment is localized on RE ions only and amounts to the RE3+ free ion value. In ErCo2Si2 the magnetic moment is normal to the tetragonal unique axis, whereas in the remaining compounds the magnetic moment is aligned along it. Néel points were determined from the temperature dependence of magnetic peak heights.  相似文献   

5.
Neutron diffraction studies of polycrystalline PrCo2Si2 and TbCo2Si2 compounds were carried out at 4.2 and 293 K. Both samples have collinear antiferromagnetic order below TN(31(1) and 46(1) K for Pr and Tb compound respectively), with their magnetic moments parallel to the c axis. The ordered magnetic moment values of Pr and Tb at 4.2 K (3.19 and 9.12 μB respectively), are close to the saturation value of the free ions. The corresponding magnetic space group Pl4/mnc (Sh410128) is body-anticentered (k = 111222 refering to Pl cell).  相似文献   

6.
ErCu2Si2 crystallises in the tetragonal ThCr2Si2-type crystal structure. In this paper results of magnetometric, electrical transport, specific heat as well as neutron diffraction are reported. Results of electrical resistivity and specific heat measurements performed at low temperature yield existence of magnetic ordering roughly at 1.3 K. These results are in concert with neutron diffraction measurements, which reveal simple antiferromagnetic ordering between 0.47 and 1.00 K. At temperatures ranging from 1.00 up to 1.50 K an additional incommensurate magnetic structure was observed. The propagation vector k=(0;0;0.074) was proposed to describe magnetic reflections within the amplitude modulated magnetic structure. Basing on specific heat studies the crystal field levels splitting scheme and magnetic entropy were calculated.  相似文献   

7.
A neutron diffraction study of polycrystalline PrCu2Si2 [1], PrCu2Ge2 [2], PrFe2Ge2 [3] and NdFe2Ge2 [4] intermetallics carried out at liquid helium temperature shows the presence of a collinear antiferromagnetic order below TN = 19 ± 1 K [1], TN = 16 ± 1 K [2], TN = 9 ± 1 K [3] and 13 ± 1 K [4]. Magnetic moment, parallel to the c-axis is localized on RE ions only. The magnetic structure of these compounds consists of ferromagnetic layers perpendicular to the c-axis coupled antiferromagnetically with sequence +-+- for PrCu2Si2 and PrCu2Ge2 and +--+ for PrFe2Ge2 and NdFe2Ge2. The RE moments amount close to the free ion values for Fe containing compounds but are smaller in those containing Cu suggesting a fairly strong influence of crystal field.  相似文献   

8.
Neutron and X-ray diffraction studies on the Tb2Ni3Si5 single crystal have been done to investigate its crystal modulation and magnetic properties. The modulated single crystal is constructed by the TbNiSi2 (CeNiSi2-type Cmcm) and the Tb2Ni3Si5 (U2Co3Si5-type Ibam) lattices. The relationship between the two lattices is described as direction of the b112-axis coincides with the a235-axis. The crystal modulation gives significant effects on magnetism. Each of the two lattices takes complex antiferromagnetism with multiplex propagation vectors.  相似文献   

9.
Magnetic properties of RMn2Si2 and RMn2Ge2 compounds, where R is a rare earth metal, have been investigated by magnetometric measurements. RMn2Ge2 (where R is a light rare earth) and LaMn2Si2 are ferromagnets. Remaining compounds have antiferromagnetic properties. DyMn2Si2 and ErMn2Si2 show ferromagnetic properties at low temperatures. It was confirmed that the value of Curie (or Néel) temperature for the Mn sublattice decreases with increasing c constant.  相似文献   

10.
The compositional region Na2ZnSiO4-Na2ZnSi2O6 has been investigated by means of X-ray powder diffraction measurements on samples quenched from elevated temperatures. Four different phases have been observed. The powder pattern of the high and low temperature modification of Na2ZnSiO4 could thus be indexed on the basis of an orthogonal cell, while for Na1.6Zn0.8Si1.2O4 a cubic unit cell could be used. These phases are all structurally related to high-cristobalite. The powder pattern of the compound Na2ZnSi2O6 has been indexed on the basis of a monoclinic unit cell. The variation of the ionic conductivity x in NaxZn0.5xSi2-0.5xO4 (1.25 ? x ? 2) has been determined. The best conductivity, 1 × 10-2 (Ω cm)-1 at 600 K is found for the composition Na1.85Zn0.925Si1.075O4.  相似文献   

11.
Neutron diffraction and magnetization measurements indicate that, at low temperatures, long-range magnetic order is present in UCO2Si2, UNi2Si2, UCu2Si2, UNi2Ge2, and UCo2Ge2. UCo2Si2 and UNi2Ge2 are simple collinear antiferromagnets of +-+- type, UCu2Si2 a simple collinear ferromagnet. In UNi2Si2, a magnetic phase transition from a LSW type structure to collinear antiferromagnetism of +-+- type was found, while in UCu2Ge2, the antiferromagnetic structure of ++-- transforms into collinear ferromagnetism. Crystal structure and magnetic parameters are given. No magnetic moment on transition metal ions was found within the accuracy of a powder neutron diffraction experiment. The stability of particular magnetic ordering schemes is discussed in terms of an isotropic RKKY mechanism.  相似文献   

12.
Physical properties of NdAu2Ge2, crystallising with the tetragonal ThCr2Si2-type crystal structure, were investigated by means of magnetic, calorimetric and electrical transport measurements as well as by neutron diffraction. The compound exhibits antiferromagnetic ordering below TN=4.5 K with a collinear magnetic structure of the AFI-type. The neodymium magnetic moments are parallel to the c-axis and amount to 1.04(4) μB at 1.5 K. The observed magnetic behaviour is strongly influenced by crystalline electric field effect.  相似文献   

13.
Different compositions in the Lu2Si2O7-Sc2Si2O7 system have been synthesized following the ceramic method. All XRD patterns are compatible with the thortveitite structure (β-RE2Si2O7 polymorph). Unit cell parameters change linearly with composition, which indicates a complete solid solubility of Sc2Si2O7 in Lu2Si2O7. 29Si MAS NMR spectra show a decrease of the 29Si chemical shift with increasing Sc content. A correlation reported in the literature to predict 29Si chemical shifts in silicates is applied here to obtain the theoretical variation in 29Si chemical shift values in the system Lu2Si2O7-Sc2Si2O7 and the results compare favourably with the values obtained experimentally. The FWHM values of the 29Si MAS NMR curves indicate a random distribution of Lu and Sc in the structure of the intermediate members. Finally, the IR study of the system confirms the solubility of Sc2Si2O7 in Lu2Si2O7, showing the splitting of several modes in the intermediate members and a linear shift of the frequency on going from one end-member to the other.  相似文献   

14.
In this work neutron diffraction studies of Tb2Rh3Si5 compound are reported. The compound crystallizes in the monoclinic crystal structure of Lu2Co3Si5-type. At 1.5 K an antiferromagnetic ordering with a propagation vector k=(1/2;1/2;1/2) was observed. The Tb magnetic moments of 9.8(2) μB form a non-collinear magnetic structure. In the vicinity of Néel temperature of 8 K a change of the magnetic ordering is evidenced. The change seems to be connected with phase transition from commensurate to incommensurate sine-wave modulation of the Tb magnetic moments.  相似文献   

15.
Magnetic properties of the Ce1-xLaxMn2Si2 system were investigated by means of neutron diffraction and magnetometry. The samples with low La concentration (x?0.5) have antiferromagnetic properties. A transition from an antiferromagnetic to a ferromagnetic state can be observed for x=0.6 (for increasing temperature). More La leads to the samples being ferromagnetic. A collinear magnetic structure is seen from the neutron diffraction spectra. From all the results known up to now it follows, that type of magnetic ordering, i.e. antiferro- or ferro-depends on the Mn-Mn interatomic distances in the basal plane.  相似文献   

16.
We have carried out neutron diffraction on a HoCo2Si2 powder sample at 4.2 K. The magnetic structure of this compound is collinear antiferromagnetic with the holmium magnetic moments parallel to the c-axis of the crystal. The magnetic moment value of holmium is 9.85 μB. The magnetic space group is I4/mm'm' (Sh410128) k = 000 The ordering temperature is tn = 12(1) K.  相似文献   

17.
The magnetic properties of the R Au2Si2 compounds with R = Ce-Er have been investigated. It was found that the compounds for which R = Ce, Sm, Gd, Tb and Dy are antiferromagnetically ordered at temperatures ranging from 5.7 to 15.9°K. PrAu2Si2 and NdAu2Si2 exhibit paramagnetic behavior for temperatures as low as 4.2°K. The magnetic structure is ferrimagnetic for the compounds in which R = Eu, Ho, and Er. The Eu compound is in the divalent state. The Néel and Curie points for this system do not follow the De-Gemnes function. Curie-Weiss Behavior is exhibited by all the compounds with effective moments in good agreement with that of a free tripositive lanthanide ion. The difference in magnetic properties between R Au2Si2 and the isomorphous R Fe2Si2 series is discussed.  相似文献   

18.
The crystal and magnetic stucture of TbMn2Ge2 are determined by neutron diffraction using a powder sample. The crystal structure of this compound is of the ThCr2Si2 type with small mixing of Mn and Ge atoms between 4(d) and 4(e) positions. At RT the antiferromagnetic collinear structure consist of a+?+? sequence of ferromagnetic layers of Mn atoms with the magnetic moment parallel to the c-axis. At 85 K, the ferromagnetic ordering within the Tb sublattice is observed. The magnetic moment (~7.7 μB) is parallel to the c-axis. At 4.2 K additional reflections are observed, which correspond to antiferromagnetic components in a monoclinic unit cell.  相似文献   

19.
The magnetic structure of the tetragonal ErCo2Si2 compound is determined by neutron diffraction on powder sample at 4.2 K. The magnetic ordering is connected with a symmetry lowering, magnetic space group P2s1 (Sh72)k = 000. The structure is collinear antiferromagnetic with the erbium magnetic moments making an angle of 56.2° with the c axis. The magnetic moment value for erbium is 6.75μB.  相似文献   

20.
Measurements of electrical resistivity are presented for polycrystalline alloys in the CePt2(Si1−xSnx)2 system. Results of X-ray diffraction indicate that the tetragonal region of the CePt2(Si1−xSnx)2 alloy system that is amenable for study only extends up to x=0.3. The resistivity maximum characteristic of a Kondo lattice is observed at a temperature Tmax=63 K for the parent compound CePt2Si2 and shifts to lower temperatures with increase in Sn content. The compressible Kondo lattice model is applied to describe the results of Tmax in terms of the on-site Kondo exchange interaction J and the electron density of states at the Fermi level N(EF). A value of |JN(EF)|=0.060±0.009 for the parent compound is obtained from the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号