首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以α-溴乙苯为引发剂,溴化亚铜为催化剂,2,2'-联吡啶为配体,用原子转移自由基聚合(ATRP)法合成了结构一定的嵌段共聚物聚苯乙烯-b-聚丙烯酸丁酯(PSt-b-PBA).经水解制备了双亲性嵌段共聚物聚苯乙烯-b-聚丙烯酸(PSt-b-PAA);采用单溶剂溶解法配制了PSt-b-PAA在甲苯中的反胶束溶液;以极性荧光化合物N-1-萘乙二胺盐酸盐(NEAH)为极性微区探针,用荧光光谱法并配合透射电镜观察探索了双亲嵌段共聚物PSt-b-PAA在甲苯溶液中的自聚集行为,考察了双亲性嵌段共聚物浓度、链结构及温度等因素对反胶束化行为的影响规律.结果表明,亲水链PAA短而亲油链PSt长的双亲嵌段共聚物PSt-b-PAA,用单溶剂溶解法可使其在甲苯中发生自聚集,形成以亲水段为核,疏水段为壳的星状反胶束结构;反胶束为10-20nm的球形聚集态结构;PSt-b-PAA的自聚集行为及临界胶束浓度与分子链的微结构和温度等因素相关,且随着共聚物浓度的增大,小胶束会逐渐结合形成大的纺垂状聚集体.  相似文献   

2.
朱寅  史明辉  奚骏  乌学东 《化学学报》2007,65(15):1487-1492
利用原子转移自由基聚合(ATRP), 再经水解后得到了嵌段共聚物聚苯乙烯-b-聚丙烯酸(PS-b-PAA), 接枝到硅烷偶联剂γ-(2,3环氧丙氧)丙基三甲氧基硅烷[γ-(2,3-glycidoxypropyl)trimethoxysilane, GPS]修饰的Si表面得到了对溶剂具有响应性的智能表面, 并通过凝胶渗透色谱(GPC)、傅立叶变换红外光谱(FTIR)、核磁共振(1H NMR)和原子力显微镜(AFM)等测试手段对产物进行了表征. 然后, 通过接触角测试研究了所得智能表面对不同溶剂的响应行为. 结果显示, PS-b-PAA接枝表面的润湿性与接枝共聚物的组成及表面处理的溶剂性质有关. 在相同的溶剂处理条件下, 共聚物中PS/PAA比值越小, 表面亲水性越大; 乙醇和碱性溶液处理后的表面呈亲水状态, 甲苯和酸性水溶液处理后的表面又切换到疏水状态, 同时其表面的酸碱响应行为具有非常稳定的可逆性.  相似文献   

3.
A doubly hydrophilic triblock copolymer poly(acrylic acid)-b-poly(ethylene glycol)-b-poly(acrylic acid) (PAA-b-PEO-b-PAA) with M w/M n = 1.15 was synthesized by atom transfer radical polymerization of t-butyl acrylate (tBA), followed by acidolysis of the PtBA blocks. The pH-sensitive micellization of PAA-b-PEO-b-PAA in acidic solution was investigated by potentiometric titration, fluorescence spectrum, dynamic light scattering and zeta potential. The pK a was 6.6 and 6.0 in deionized water and in 0.1 mol/L NaCl solution, respectively. The copolymer formed micelles composed of a weakly hydrophobic core of complexed PAA and PEO and a hydrophilic PEO shell in 1 mg/mL solution at pH < 5.5 due to hydrogen bonding. The critical micelle concentration was 0.168 mg/mL at pH 2.0. At pH < 4.5, steady and narrow distributed micelles were formed. Increasing pH to 5.0, unsteady and broad distributed micelles were observed. At pH > 5.5, the micelle was destroyed owing to the ionization of the PAA blocks.  相似文献   

4.
Four-armed amphiphilic block copolymers polystyrene-b-poly(N-isopropyl acrylamide) (PSt-b-PNIPAAM)4 were synthesized by atom transfer radical polymerization (ATRP) in two steps. Star narrow dispersed polystyrene, (PSt-Br)4, with controlled number-average molecular weight was firstly synthesized by ATRP of styrene (St) using pentaerythritol tetrakis (2-bromoisobutyrate) (4Bri-Bu) as four-armed initiator. Then, (PSt-b-PNIPAAM)4 was prepared using (PSt-Br)4 as macroinitiator by ATRP. The structures of (PSt-Br)4 and (PSt-b-PNIPAAM)4 were confirmed by characterization by nuclear magnetic resonance (1H NMR). The apparent viscosity of the four-armed (PSt-b-PNIPAAM)4 was significantly lower than that of the linear PSt-b-PNIPAAM with the same amount of repeat units of PSt and PNIPAAM. The self-assembly behavior of the four-armed amphiphilic block copolymers (PSt-b-PNIPAAM)4 in mixed solution (DMF/H2O) and the lower critical solution temperature (LCST) of the resulting micelles were investigated by scanning electron microscopy (SEM), dynamic light scattering (DLS) and UV-VIS spectroscopy. The results show that the size of the mono-dispersed spherical micelles decreased with the increment of the chain length of PNIPAAM in the block copolymers, while LCST increased.  相似文献   

5.
In this paper, we describe an efficiently physical method of electric-field-assisted assembly and alignment of block copolymer micelles. Amphiphilic block copolymer polystyrene-b-poly(acrylic acid) (PS-b-PAA) self-assembles into spherical micelles in water consisting of a core formed by the insoluble PS blocks and a shell formed by the soluble PAA blocks. When applying an alternating voltage to micelles solution dispersed onto a thin gap of coplanar metallic electrode, we generate directional arrays of highly ordered aggregates in long range. The formation of the ordered aggregates is due to the adjustment of interactions between micelles induced by dielectrophoretic forces in alternating electric field. The morphologies and arrays of particles become more regular with increasing of the strength and frequency of electric field. Voltage and frequency of the electric field and other parameters, such as particles concentration and, the viscosity and dielectric constant of the medium, affect the assembly process.  相似文献   

6.
The existence of micelles of polystyrene-block-poly(ethylene/propene) in solutions of polystyrene in toluene was investigated. Toluene is a good solvent of both copolymer blocks whereas polystyrene and poly(ethylene/propene) are immiscible polymers. The presence of homopolystyrene at high enough concentration can induce the micellization of polystyrene-block-poly(ethylene/propene) in solution of a good solvent such as toluene. The thermodynamics of this new micelle system at a given polystyrene concentration was studied. Light scattering measurements were carried out in order to determine the critical micelle temperature (CMT) of different micellar solutions. Standard Gibbs energy, enthalpy and entropy of micellization were estimated from CMT and concentration data. The numerical values found were less negative than those found for micelle systems consisting in a block copolymer dissolved in a single selective solvent.  相似文献   

7.
Organic–inorganic pentablock copolymers have been synthesized via atom transfer radical polymerization (ATRP) of styrene (St) and vinyl acetate (VAc) monomers at 60 °C using CuCl/N,N,N′,N″,N″-pentamethyldiethylenetriamine as a catalyst system initiated from boromoalkyl-terminated poly(dimethylsiloxane) (PDMS)/cyclodextrins macroinitiator (Br-PDMS/γ-CD). Br-PDMS-Br was reacted with γ-CD in different conditions with inclusion complexes being characterized through hydrogen nuclear magnetic resonance (1H NMR) and differential scanning calorimetry (DSC). Resulting Br-PDMS-Br/γ-CD inclusion complexes were taken as macroinitiators for ATRP of St and VAc. Well-defined poly(styrene)-b-poly(vinyl acetate)-b-poly(dimethylsiloxane/γ-cyclodextrin)-b-poly(vinyl acetate)-b-poly(styrene) (PSt-b-PVAc-b-PDMS/γ-CD-b-PVAc-b-PSt) pentablock copolymer was characterized by 1H NMR, gel permeation chromatograph (GPC) and DSC. There was a good agreement between the number-average molecular weight calculated from 1H NMR spectra and that of theoretically calculated. Pentablock copolymers consisting of Br-PDMS-Br/γ-CD inclusion complex as central blocks (inorganic block) and PVAc and PSt as terminal blocks were synthesized by this technique. PSt-b-PVAc-b-PDMS/γ-CD-b-PVAc-b-PSt pentablock copolymer can undergo a temperature-induced reversible transition upon heating of the copolymer complex from white complex at 22 °C to green complex in 55 °C which characterized with XRD and 1H NMR. XRD showed a change in crystallinity percent of St peak with changing the temperature which calculated by Origin75 software.  相似文献   

8.
采用原子转移自由基聚合伴随水解的方法合成了聚丙烯酸-聚醚嵌段共聚物(PAA-F108-PAA), 并通过氢核磁共振波谱和二维核Overhauser效应谱(2D NOE)研究了温度、 羧酸基团中和度(α)及盐浓度对PAA-F108-PAA嵌段共聚物在水溶液中胶束化行为的影响. 结果表明, PAA-F108-PAA分子的临界胶束化温度受α影响较小, 受盐的种类和浓度影响较大. 当α=0.14(0.01 mol/L KCl)时, 在6 ℃条件下, PAA-F108-PAA分子处于塌缩状态, 而在60 ℃条件下, 聚氧化丙烯(PPO)链段发生疏水聚集形成胶束的核, PAA链段与PEO链段相互作用形成胶束的壳; 当α=0.80(0.01 mol/L KCl)时, 在6 ℃条件下, PAA-F108-PAA分子处于相对伸展状态, 而在60 ℃条件下, PPO链段仍发生疏水聚集形成胶束的核, PEO与PAA彼此分离形成胶束的壳. 增加KCl的浓度至1 mol/L, PAA-F108-PAA分子的临界胶束化温度显著降低, KCl对PPO和PEO链段都表现出脱水作用. 但KI的浓度增加至1 mol/L时, PAA-F108-PAA分子的临界胶束化温度仅略微增加, KI对PPO链段表现出脱水作用, 而对PEO链段表现出增溶作用.  相似文献   

9.
Joint micellization of two amphiphilic diblock copolymers is studied by velocity sedimentation, transmission electron microscopy, electrophoretic mobility measurements, and static light scattering. One of the diblock copolymers is a strong polyelectrolyte (polystyrene-block-poly(N-ethyl-4-vinylpyridinium bromide)), while the second one is a weakly charged or uncharged copolymer (polystyrene-block-poly(acrylic acid) or polystyrene-block-poly(4-vinylpyridine)). It is shown that the mixing of the diblock copolymers in a selective aqueous-organic solvent (DMF-methanol-water) leads to the formation of joint (hybrid) micelles and that the composition of these micelles is close to the composition of the polymer mixture. Micelles consist of an insoluble polystyrene core and a mixed corona composed of blocks of a strong polyelectrolyte and a weakly charged or uncharged copolymer. Aqueous dispersions of mixed micelles are obtained with the use of the dialysis technique, the spherical morphology of the micelles is ascertained, and their three-layered structure is proposed. The nonlinear dependence of the molecular mass of micelles on their composition is found. The decisive effect of electrostatic repulsion between strong polyelectrolyte units on the thermodynamics of micellization and the dispersion stability and molecular-mass characteristics of the mixed micelles is demonstrated.  相似文献   

10.
The graft copolymers (polystyrene-graft-polyoxyethylene) (PSt-graft-PEO) were prepared by the radical dispersion copolymerization of methacryloyl (MA)-terminated PEO macromonomer and styrene. By means of size-exclusion chromatography, liquid chromatography at the critical adsorption point, and light scattering, the molecular weight parameters and the solution properties of PSt-graft-PEO were investigated. The apparent average molecular weight and the molecular weight distribution (MWD) of graft copolymers were found to decrease with increasing molecular weight of PEO-MA macromonomer. This decreased molecular weight was attributed to the chain transfer to PEO unit and increased contribution of the solution polymerization. The broad MWD varied with the ratio of the polymerization in the continuous phase and the polymer particles. The number of PEO grafts per PSt backbone decreased with increasing molecular weight of the PSt-graft-PEO copolymer, which was attributed to the intramolecular association of PEO segments. The intrinsic viscosity or the coil size of graft copolymer molecules varied with temperature as a result of the dehydration of PEO segments. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3087–3097, 1999  相似文献   

11.
ZHANG  Xiaohuan  WANG  Beidi  YANG  Dong  ZHANG  Xiaohong  YUAN  Li  TANG  Qianqian  HU  Jianhua 《中国化学》2009,27(11):2273-2278
A new amphiphilic graft copolymer containing hydrophilic poly(acrylic acid) backbone and hydrophobic poly(vinyl acetate) side chains was synthesized via sequential atom transfer radical polymerization (ATRP) followed by selective hydrolysis of poly(methoxymethyl acrylate) backbone. Grafting‐from strategy was employed to synthesize PMOMA‐g‐PVAc graft copolymer (Mw/Mn=1.64) via ATRP. The final PAA‐g‐PVAc amphiphilic graft copolymer was obtained by selective acidic hydrolysis of PMOMA backbone in acidic environment without affecting the side chains. The critical micelle concentrations (cmc) in aqueous media were determined by a fluorescence probe technique. The micelle morphologies were found to be spheres.  相似文献   

12.
Synthesis of poly(styrene‐block‐tetrahydrofuran) (PSt‐b‐PTHF) block copolymer on the surfaces of intercalated and exfoliated silicate (clay) layers by mechanistic transformation was described. First, the polystyrene/montmorillonite (PSt/MMT) nanocomposite was synthesized by in situ atom transfer radical polymerization (ATRP) from initiator moieties immobilized within the silicate galleries of the clay particles. Transmission electron microscopy (TEM) analysis showed the existence of both intercalated and exfoliated structures in the nanocomposite. Then, the PSt‐b‐PTHF/MMT nanocomposite was prepared by mechanistic transformation from ATRP to cationic ring opening polymerization (CROP). The TGA thermogram of the PSt‐b‐PTHF/MMT nanocomposite has two decomposition stages corresponding to PTHF and PSt segments. All nanocomposites exhibit enhanced thermal stabilities compared with the virgin polymer segments. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2190–2197, 2009  相似文献   

13.
The diblock copolymers of polystyrene and poly(tert‐butyl acrylate) (PSt‐b‐PtBA) with various molecular weights and hydrophobic/hydrophilic (styrene/acrylic acid) chain length were prepared by atom transfer radical polymerization (ATRP). Selective hydrolysis of the diblock copolymers (PSt‐b‐PtBA) resulted in amphiphilic block copolymers of polystyrene and poly(acrylic acid) (PSt‐b‐PAA). The amphiphilic block copolymers of PSt‐b‐PAA with average molecular weight (Mn) <7500 were proved to be critical in dispersing the pigments of UV curable ink‐jet inks for manufacturing the color filter. Incorporating DB2 diblock copolymer dispersants with styrene/acrylic acid ratio at 1.5 allowed more UV curable compositions in the red and blue inks without deteriorating pigment dispersing stability and jetting properties of the ink‐jet inks. The ink drops can be precisely ejected into the tiny color area. Better properties of the cured red stripe such as nanoindentation hardness and chemical resistance were found. The competing absorption of UV light by the blue pigment hindered the through cure of monomers near the interface between glass substrate and the blue stripe. This leads to lower hardness and poor chemical resistance of the UV cured blue stripe. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3337–3353, 2005  相似文献   

14.
Adding perfluoroalkyl (PF) segments to amphiphilic copolymers yields triphilic copolymers with new application profiles. Usually, PF segments are attached as terminal blocks via Cu(I) catalyzed azide-alkyne cycloaddition (CuAAC). The purpose of the current study is to design new triphilic architectures with a PF segment in central position. The PF segment bearing bifunctional atom transfer radical polymerization (ATRP) initiator is employed for the fabrication of triphilic poly(propylene oxide)-b-poly(glycerol monomethacrylate)-b-PF-b-poly(glycerol monomethacrylate)-b-poly(propylene oxide) PPO-b-PGMA-b-PF-b-PGMA-b-PPO pentablock copolymers by a combined ATRP and CuAAC reaction approach. Differential scanning calorimetry indicates the PF-initiator to undergo a solid–solid phase transition at 63°C before the final crystal melting at 95°C. This is further corroborated by polarized optical microscopy and X-ray diffraction studies. The PF-initiator could successfully polymerize solketal methacrylate (SMA) under typical ATRP conditions producing well-defined Br-PSMA-b-PF-b-PSMA-Br triblock copolymers that are then converted into PPO-b-PSMA-b-PF-b-PSMA-b-PPO pentablock copolymer via CuAAC reaction. Subsequently, acid hydrolysis of the PSMA blocks afforded water soluble well-defined triphilic pentablock copolymers PPO-b-PGMA-b-PF-b-PGMA-b-PPO with fluorophilic central segment, hydrophilic middle blocks, and lipophilic outer blocks. The triphilic block copolymers could self-assemble, depending upon the preparatory protocol, into spherical and filament-like phase-separated nanostructures as revealed by transmission electron microscopy.  相似文献   

15.
Novel amphiphilic fluorinated ABC‐type triblock copolymers composed of hydrophilic poly(ethylene oxide) monomethyl ether (MeOPEO), hydrophobic polystyrene (PSt), and hydrophobic/lipophobic poly(perfluorohexylethyl acrylate) (PFHEA) were synthesized by atom transfer radical polymerization (ATRP) using N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA)/CuBr as a catalyst system. The bromide‐terminated diblock copolymers poly(ethylene oxide)‐block‐polystyrene (MeOPEO‐b‐PSt‐Br) were prepared by the ATRP of styrene initiated with the macroinitiator MeOPEO‐Br, which was obtained by the esterification of poly(ethylene oxide) monomethyl ether (MeOPEO) with 2‐bromoisobutyryl bromide. A fluorinated block of poly(perfluorohexylethyl acrylate) (PFHEA) was then introduced into the diblock copolymer by a second ATRP process to synthesize a novel ABC‐type triblock copolymer, poly(ethylene oxide)‐block‐polystyrene‐block‐poly(perfluorohexylethyl acrylate) (MeOPEO‐b‐PSt‐b‐PFHEA). These block copolymers were characterized by means of proton nuclear magnetic resonance (1H NMR) and gel permeation chromatography (GPC). Water contact angle measurements revealed that the polymeric coating of the triblock copolymer (MeOPEO‐b‐PSt‐b‐PFHEA) shows more hydrophobic than that of the corresponding diblock copolymer (MeOPEO‐b‐PSt). Bovine serum albumin (BSA) was used as a model protein to evaluate the protein adsorption property and the triblock copolymer coating posseses excellent protein‐resistant character prior to the corresponding diblock copolymer and polydimethylsiloxane. These amphiphilic fluoropolymers can expect to have potential applications for antifouling coatings and antifouling membranes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Three series of block copolymers of acrylamide (AM) and styrene (St) as hydrophobic comonomer with varied microstructures were prepared in microemulsion medium by changing feed ratio of monomers, ratio of St to surfactant, and amount of initiator, respectively. The effects of microstructure factors of the amphiphilic block copolymers PAM-b-PSt on their aqueous solution properties were investigated by fluorescence probe technique and surface tension measurement in detail. The experimental results show that the aqueous solution properties of PAM-b-PSt are strongly dependent on their microstructure factors, such as the length and content of PSt hydrophobic blocks in the copolymers and their molecular weight. It was found that the main microstructure factors which effect the hydrophobic association behavior of the copolymer PAM-b-PSt are the length and content of PSt hydrophobic blocks in the copolymer, whereas the hydrophobic association behavior of the copolymer is not affected nearly so much by molecular weight in more dilute regions. At the same time, it was also found that the main microstructure factors which affect the surface activity of the copolymer are the content of PSt hydrophobic blocks in the copolymer and molecular weight, whereas the length of PSt blocks in copolymer does not affect surface activity of the copolymer nearly so much under fixed content of PSt hydrophobic blocks and molecular weight in the copolymer.  相似文献   

17.
Atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP) were combined to synthesize various polymers with various structures and composition. Poly(ε-caprolactone)-b-poly(n-octadecyl methacrylate), PCL-PODMA, was prepared using both sequential and simultaneous polymerization methods. Kinetic studies on the simultaneous process were performed to adjust the rate of both polymerizations. The influence of tin(II) 2-ethylhexanoate on ATRP was investigated, which led to development of new initiation methods for ATRP, i.e., activators (re)generated by electron transfer (AGET and ARGET). Additionally, block copolymers with two crystalizable blocks, poly(ε-caprolactone)-b-poly(n-butyl acrylate)-b-poly(n-octadecyl methacrylate), PCL-PBA-PODMA, block copolymers for potential surfactant applications poly(ε-caprolactone)-b-poly(n-octadecyl methacrylate-co-dimethylaminoethyl methacrylate), PCL-P(ODMA-co-DMAEMA), and a macromolecular brush, poly(hydroxyethyl methacrylate)-graft-poly(ε-caprolactone), PHEMA-graft-PCL, were prepared using combination of ATRP and ROP.  相似文献   

18.
Summary: Novel carboxy (COOH)-functionalized mesoporous polystyrene membranes were prepared from polystyrene-block-poly(D,L-lactide) (PS-b-PLA) diblock copolymers through the selective degradation of the PLA block. The combination of atom transfer radical polymerization (ATRP) and ring-opening polymerization (ROP) techniques enabled the synthesis of nanostructured diblock copolymers possessing carboxylic acid functionality at the junction between both blocks. Such copolymers were subjected to shear flow through the use of a channel die to align their nanodomains. Under mild alkaline conditions, the quantitative hydrolysis of the polyester nanodomains afforded mesoporous materials with COOH-coated pore walls. The PS-b-PLA precursors as well as the resulting porous systems were carefully analyzed by size exclusion chromatography (SEC), 1H NMR, scanning electron microscopy (SEM), and two-dimensional small-angle X-ray scattering (2-D SAXS). Moreover, the specific surface area and pore size distribution were determined by nitrogen sorption porosimetry.  相似文献   

19.
The synthesis and characterization of a new block copolymer, poly(styrene-b-isobutylene) (PSt-b-PIB), is described. The synthesis involves the initiation of an isobutylene polymerization by a polystyrene molecule containing a terminal tertiary bromine (PSt-Br), in conjunction with diethylaluminum chloride coinitiator. The species PSt-Br is in turn synthesized by initiating the polymerization of styrene selectively by the tertiary chlorine of the 2-bromo-6-chloro-2,6-dimethylheptane/Et3Al initiator system in the absence of chain transfer. The conditions conducive for selective initiation by tertiary chlorine have been worked out. The pure block copolymer, PSt-b-PIB, is obtained by selective extraction and some of its properties were determined, e.g., solubility and film behavior, Tg, and intrinsic viscosity versus temperature. The intrinsic viscosity (in toluene) exhibits a maximum and a minimum in the temperature range from 15 to 55°C.  相似文献   

20.
A novel thermo-responsive diblock copolymer of poly(N-vinyl-2-pyrrolidinone)-block-poly(N-isopropylacrylamide) (PNVP-b-PNIPAM) was synthesized. FT-IR, 1H-NMR and SEC results confirmed the successful synthesis of PNVP-b-PNIPAM diblock copolymer via anionic polymerization. The polymeric micelles formed from PNVP-b-PNIPAM copolymer in aqueous solution were developed and characterized as a potential thermo-responsive and biocompatible drug delivery system. Micellization of the diblock copolymer in aqueous solution was characterized by dynamic laser scattering (DLS), turbidity measurement, tension measurement and transmission electron microscopy (TEM). The thermo-responsive polymeric micelles with the size ranges of 200 to 260 nm and thickness of 30 nm are localized, selected and targeted for drug release, having a great potential in response to external-stimulus such as temperatures from 35 to 39°C. The critical micellization concentration (cmc) of PNVP-b-PNIPAM in aqueous solution is 0.0026 wt% determined by turbidity measurement. The size of micelles determined by DLS increased from 163 to 329 nm with increasing concentration of PNVP-b-PNIPAM from 0.25 to 0.5 wt% in aqueous solution at 40°C, which is determined by DLS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号