首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Nuclear Physics B》2004,700(1-3):3-50
Jet substructure and differential cross sections for jets produced in the photoproduction and deep inelastic ep scattering regimes have been measured with the ZEUS detector at HERA using an integrated luminosity of 82.2 pb−1. The substructure of jets has been studied in terms of the jet shape and subjet multiplicity for jets with transverse energies . The data are well described by the QCD calculations. The jet shape and subjet multiplicity are used to tag gluon- and quark-initiated jets. Jet cross sections as functions of , jet pseudorapidity, the jet–jet scattering angle, dijet invariant mass and the fraction of the photon energy carried by the dijet system are presented for gluon- and quark-tagged jets. The data exhibit the behaviour expected from the underlying parton dynamics. A value of αs(MZ) of was extracted from the measurements of jet shapes in deep inelastic scattering.  相似文献   

2.
Full jet reconstruction in relativistic heavy ion collisions provides new and unique insights to the physics of parton energy loss. Because of the large underlying event multiplicity in A+A collisions, random and correlated fluctuations in the background can result in the reconstruction of fake jets. These fake jets must be identified and rejected to obtain the purest jet sample possible. A large but reducible fake rate of jets reconstructed using an iterative cone algorithm on HIJING events is observed. The absolute rate of fake jets exceeds the binary-scaled p+p jet rate below 50 GeV and is not negligible until 100 GeV. The variable Σj T , the sum of the jet constituent’s E T perpendicular to the jet axis, is introduced to identify and reject fake jets at by a factor of 100 making it negligible. This variable is shown to not strongly depend on jet energy profiles modified by energy loss. By studying azimuthal correlations of reconstructed di-jets, the fake jet rate can be evaluated in data. All results presented use modified versions of ATLAS software and should be considered “ATLAS preliminary”.  相似文献   

3.
Symmetric three-jet events are selected from hadronic Z0 decays such that the two lower energy jets are each produced at an angle of about 150° with respect to the highest energy jet. In some cases, a displaced secondary vertex is reconstructed in one of the two lower energy jets, which permits the other lower energy jet to be identified as a gluon jet through anti-tagging. In other cases, the highest energy jet is tagged as a b jet or as a light quark (uds) jet using secondary vertex or track impact parameter and momentum information. Comparing the two lower energy jets of the events with a tag in the highest energy jet to the anti-tagged gluon jets yields a direct comparison of b, uds and gluon jets, which are produced with the same energy of about 24 GeV and under the same conditions. We observe b jets and gluon jets to have similar properties as measured by the angular distribution of particle energy around the jet directions and by the fragmentation functions. In contrast, gluon jets are found to be significantly broader and to have a markedly softer fragmentation function than uds jets. For thek jet finder withy cut=0.02, we find as the ratios of the mean charged particle multiplicity in the gluon jets compared to the b and uds jets. Results are also reported using the cone jet finder.  相似文献   

4.
The self-oscillatory interaction of supersonic jets with barriers has mainly been studied for under-expanded jets. There are only a few experimental studies examining the case of overexpanded jets, with little computational work done in this direction. To fill this gap, we performed numerical simulations of overexpanded supersonic jets with barriers. The calculations were performed by the Godunov method on fine grids using parallel programming techniques. In the course of numerical simulations, the gasdynamic parameters of the jet and the geometric parameter of the barrier were varied. The barrier had the shape of a cylindrical cavity of depth l = (0 − 18)r a , where r a is the nozzle exit radius (the case l = 0 corresponds to a flat-end barrier). Based on the results of the numerical simulations, the conclusion on whether the self-oscillation process occurs was drawn and the dependence its characteristics (frequency and amplitude) on the governing gasdynamic and geometric parameters were obtained. Good agreement with experimental data on the fundamental tone frequency was demonstrated. A low-frequency oscillation mode was mostly realized. In this case, the jet experienced periodic suctions into and ejections from the cavity, counter the oncoming jet flow, with the formation of a structure consisting of three discontinuity surfaces (two shock waves and a separating surface contact).  相似文献   

5.

Abstract  

Direct numerical simulation of incompressible, spatially developing round and square jets at a Reynolds number of 1,000 is performed. The effect of two types of inlet perturbation on the flow structures is analyzed. First, dual-mode excitation, which is a combination of axisymmetric perturbation at preferred mode frequency and helical perturbation at sub-harmonic frequency is used, having a disturbance frequency ratio equal to R f  = 2. It is observed that the circular and square jets bifurcate and spread on one of the orthogonal planes forming a Y-shape jet in the downstream while no spreading is visible on the other plane. The second type of perturbation is a flapping excitation at a sub-harmonic frequency, St F = 0.2. It leads to a Y-shape bifurcation for both square and circular jets. On the other hand, for flapping excitation at the preferred mode frequency, namely, St F = 0.4, a circular jet bifurcates into a Ψ-shape whereas the square jet reveals simple spreading.  相似文献   

6.
In this paper we find the parameters (radii, lengths, velocities) of the jets produced in liquid-metal ion sources. The jet stability with respect to developing sausages (Rayleigh instability) is studied. The Rayleight instability is shown to occur for rather large currents (in long jets). The currents critical for the instability initiation are calculated for Ga and Au sources. The results are in accordance with the experimental data available. In the case of Ga, the accordance is achieved only for the hot jet model (TT m , whereT m is the melting temperature), when the viscosity is appreciably lower.  相似文献   

7.
We present numerical studies of active flow control applied to jet flow. We focus on rectangular jets, which are more unstable than their circular counterparts. The higher level of instability is expressed mainly by an increased intensity of mixing of the main flow with its surroundings. We analyse jets with aspect ratio Ar = 1, Ar = 2 and Ar = 3 at Re = 10,000. It is shown that the application of control with a suitable excitation (forcing) at the jet nozzle can amplify the mixing and qualitatively alter the character of the flow. This can result in an increased spreading rate of the jet or even splitting into nearly separate streams. The excitations studied are obtained from a superposition of axial and flapping forcing terms. We consider the effect of varying parameters such as the frequency of the excitations and phase shift between forcing components. The amplitude of the forcing is 10% of the inlet centreline jet velocity and the forcing frequencies correspond to Strouhal numbers in a range St = 0.3–0.7. It is shown that qualitatively different flow regimes and a rich variety of possible flow behaviours can be achieved simply by changing aspect ratio and forcing parameters. The numerical results are obtained applying large eddy simulation in combination with a high-order compact difference code for incompressible flows. The solutions are validated based on experimental data from literature for non-excited jets for Ar = 1 at Re = 1.84 × 105 and Ar = 2 at Re = 1.28 × 105. Both the mean velocities as well as their fluctuations are predicted with good accuracy.  相似文献   

8.
9.
Conditional averaging techniques were used to examine the periodic motions that were observed in flows consisting of an offset planar jet and a co-flowing planar wall jet. The offset jet is one jet height (Hj) away from the wall and has a Reynolds number of approximately 40, 000, based on Hj and flow-rate averaged velocity Uo; for the co-flowing jets, different heights (i.e., 0.18Hj and 0.5Hj) and velocities (i.e., 0.56Uo and 0.36Uo) were considered. The flows had periodic motions with frequencies fHj/Uo = 0.28 and 0.49 or fHc/Uo = 0.23 and 0.25, where Hc is the distance between the jets. The periodic motions were present in both the inner shear layer of the offset jet above the re-circulation region and the outer shear layer of the wall jet below the re-circulation region. The motions from the inner shear layer of the offset jet persisted in the shear layer that formed downstream of the re-circulating region. There were periodic motions in the outer shear layer of the offset jet particularly in the flow with the smaller wall jet. The relative contribution of the motions to the total fluctuations increased as the flow evolved downstream reaching a maximum approximately 4Hc downstream of the flow exit. The relative contribution of the periodic motions to the turbulent fluctuations was similar in the two flows but the periodic motions had a much larger impact on the near-wall velocity and pressure fluctuations in the flow with the smaller wall jet due to the trajectory of the periodic structures, the distance of the periodic structures to the wall and the size of these structures.  相似文献   

10.
The production of forward jets has been measured in deep inelastic ep collisions at HERA. The results are presented in terms of single differential cross sections as a function of the Bjorken scaling variable (xBj) and as triple differential cross sections d3σ/dxBjdQ2 , where Q2 is the four momentum transfer squared and is the squared transverse momentum of the forward jet. Also cross sections for events with a di-jet system in addition to the forward jet are measured as a function of the rapidity separation between the forward jet and the two additional jets. The measurements are compared with next-to-leading order QCD calculations and with the predictions of various QCD-based models.  相似文献   

11.
The gasdynamic parameters of nonsteady expansion of He, Ar, N2, and SiH4 from a sonic nozzle into a space with reduced background gas pressure were experimentally studied for moderate values of n (103–106) and the Reynolds number (ReL∼100–102). The jet set times necessary for the formation of pulsed jets of a given finite duration are determined. The results are generalized in terms of dimensionless similarity parameters. The laws of motion of the leading and trailing fronts in pulsed jets of various gases are established. The leading front of a pulsed jet propagates at a velocity significantly smaller than the limiting steady value. The jet expansion dynamics is determined by the ratio of the momentum of the expanding gas to that of the background gas displaced from the flow region. The length of the steady flow region in a pulsed jet monotonically decreases downstream from the source and drops with increasing background gas pressure because of the loss of jet particles in the trailing rarefaction wave; this length increases with the initial momentum because the background gas is more intensively displaced from the flow region.  相似文献   

12.
High-p T photon–hadron correlations are studied within the next-to-leading order (NLO) perturbative QCD parton model with modified parton-jet fragmentation functions due to jet quenching in high-energy A+A collisions. In central A+A collisions, the away-side hadrons with large z T=p T h /p T γ are controlled mainly by the surface emission of the gamma-jet events, while a small z T region will be volume emission bias. In other words, gamma jets for a small-z T region probe the dense matter deeper than those gamma jets for a large-z T region, so the small-z T gamma jets are found to be slightly more sensitive to the properties of the dense matter than the large-z T gamma jets.  相似文献   

13.
M. Attalla 《实验传热》2015,28(2):139-155
The heat transfer characteristics in a stagnation region were investigated experimentally for five circular free jets impinging into a heated flat plate. The local temperature distributions are estimated from the thermal images obtained from an infrared camera. To get a precise heat transfer data over the plate, fully developed straight pipe jets were used in this study. Mean jet Reynolds number varied from 1,000 to 45,000, jet-to-plate vertical non-dimensional distance H/D varied from 2 to 6, and the spacing distance jet-to-jet S/D varied from 2 to 8. A geometrical arrangement of one jet surrounded by four jets an in-line array was tested. The results show that the stagnation point Nusselt number is correlated to a jet Reynolds number as Nust∝Re0.61. The average Nusselt number is higher at a separation distance of 2D for three cases of spacing distances, S/D = 2, 4, and 6.  相似文献   

14.
Symmetric three-jet events are selected from hadronic Z0 decays such that the two lower energy jets are each produced at an angle of about 150° with respect to the highest energy jet. In some cases, a displaced secondary vertex is reconstructed in one of the two lower energy jets, which permits the other lower energy jet to be identified as a gluon jet through anti-tagging. In other cases, the highest energy jet is tagged as a b jet or as a light quark (uds) jet using secondary vertex or track impact parameter and momentum information. Comparing the two lower energy jets of the events with a tag in the highest energy jet to the anti-tagged gluon jets yields a direct comparison of b, uds and gluon jets, which are produced with the same energy of about 24 GeV and under the same conditions. We observe b jets and gluon jets to have similar properties as measured by the angular distribution of particle energy around the jet directions and by the fragmentation functions. In contrast, gluon jets are found to be significantly broader and to have a markedly softer fragmentation function than uds jets. For the k jet finder with y cut=0.02, we find $${«ngle n^{? ch.}»ngle {? gluon}?er «ngle n^{? ch.}»ngle {? b} {? quark}}=1.089pm 0.024 ({? stat.})pm0.024 ({? syst.})$$ $${«ngle n^{? ch.}»ngle {? gluon}?er «ngle n^{? ch.}»ngle {? uds} {? quark}}=1.390pm 0.038 ({? stat.})pm0.032 ({? syst.})$$ as the ratios of the mean charged particle multiplicity in the gluon jets compared to the b and uds jets. Results are also reported using the cone jet finder.  相似文献   

15.
Three jet events arising from decays of the Z boson, collected by the DELPHI detector, were used to measure differences in quark and gluon fragmentation. Gluon jets were anti-tagged by identifying b quark jets. Unbiased quark jets came from events with two jets plus one photon. Quark and gluon jet properties in different energy ranges were compared for the first time within the same detector. Quark and gluon jets of nearly the same energy in symmetric three jet event topologies were also compared. Using three independent methods, the average value of the ratio of the mean charged multiplicities of gluon and quark jets is $$< r >=1.241 pm 0.015 (stat.)pm 0.025 (syst.).$$ Gluon jets are broader and produce fragments with a softer energy spectrum than quark jets of equivalent energy. The string effect has been observed in fully symmetric three jet events. The measured ratio Rγ of the charged particle flow in the qq? inter-jet region of the qq?g and qq?γ samples agrees with the perturbative QCD expectation. The dependence of the mean charged multiplicity on the hadronic center-of-mass energy was analysed in photon plus n-jet events. The value for αs(M Z) determined from these data using a QCD prediction with corrections at leading and next-to-leading order is $$←pha_s(M_Z)=0.116pm 0.003 (stat.)pm 03009 (syst.).$$  相似文献   

16.
J. Pellé  S. Harmand 《实验传热》2013,26(4):337-358
Abstract

This article presents an experimental study of the local heat transfer on the rotor surface in a discoidal rotor-stator system air-gap in which an air jet comes through the stator and impinges the rotor. To determine the surface temperatures, measurements were taken on the rotor, using an experimental technique based on infrared thermography. A thermal balance was used to identify the local convective heat transfer coefficient. The influence of the axial Reynolds number Re j and the rotational Reynolds number Re was measured and compared with the data available in the literature. Local convective heat transfer coefficients were obtained for a dimensionless space between the two disks G = 0.01, for Re j between 0 and 41,666, and for Re between 20,000 and 516,000. The flow data found in the literature can be used to explain the heat transfers in this small space configuration. In fact, the rotating disk can be divided into two influence zones: one dominated by the air jet near the center of the rotor and one affected by both the air jet and rotation. Heat transfers with non zero impinging jets appear to be continuously improved compared to those with no jets, even if the two influence zones mentioned previously are situated differently.  相似文献   

17.
The charged π-meson and proton mixed hadronic jets in the fragmentation regions of π + p and π + C interactions at 40 GeV/c are extracted and their properties are investigated. It has been shown that the characteristics of the jets in the π-meson fragmentation region are universal in jet events, do not depend on the type of the target and are defined only from the quark contents of the π meson. The jet characteristics in the proton fragmentation region are different and depend upon the quark contents of the proton. Mixed hadronic jets with defined values of the electric charge were studied. The resonance structures related to the Δ isobars are discovered in the effective mass distributions of the jets. It has been shown that the small azimuthal angle high-p T correlations are observed and strong back-to-back correlations exist. The text was submitted by the authors in English.  相似文献   

18.
Recent LHC results concerning full jet-quenching in Pb Pb collisions have been presented in terms of a jet asymmetry parameter, measuring the imbalance between the transverse momenta of leading and subleading jets. We examine the potential sensitivity of this distribution to fluctuations from the heavy-ion background. Our results suggest that a detailed estimate of the true fluctuations would be of benefit in extracting quantitative information about jet quenching. We also find that the apparent impact of fluctuations on the jet asymmetry distribution can depend significantly on the choice of low-p t threshold used for the simulation of the hard pp events.  相似文献   

19.
OH radical number density in multiple atmospheric pressure microwave plasma jets is measured using UV cavity ringdown spectroscopy of the OH (A–X) (0–0) band at 308 nm. The plasma cavity was excited by a 2.45 GHz microwave plasma source and plasma jets of 2–12 mm long were generated by using three different plasma gases, argon (Ar), Ar/N2, and Ar/O2. Comparative characterization of the plasma jets in terms of plasma shape, stability, gas temperature, emission intensities of OH, NO, and N2, and absolute number density of the OH radical was carried out under different plasma gas flow rates and powers at various locations along the plasma jet axis. With three different operating gases, the presence of OH radicals in all of the plasma jets extended to the far downstream. As compared to the argon plasma jets, the plasma jets formed with Ar/N2 and Ar/O2 are more diffuse and less stable. Plasma gas temperatures along the jet axis were measured to be in the range of 470–800 K for all of the jets formed in the different gas mixtures. In each plasma jet, OH number density decreases along the jet axis from the highest OH density in the vicinity of the jet tip to the lowest in the far downstream. OH density ranges from 1.3 × 1012 to 1.1 × 1016, 4.1 × 1013 to 3.9 × 1015, and 7.0 × 1012 to 4.6 × 1016 molecule/cm3 in the Ar, Ar/N2, and Ar/O2 plasma jets, respectively. The OH density dependence on plasma power and gas flow rate in the three plasma jets is also investigated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号