首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Abstract— Difference spectrum for the reduction of A2, a bound secondary electron acceptor of photo-system I, in the thylakoid membranes of a thermophilic blue-green alga, Synechococcus sp., was determined by subtracting the difference spectrum of P700 photooxidation from the difference spectrum for flash-induced absorption changes due to oxidation of P700 and reduction of A2, or by measuring light-induced absorption changes under reducing conditions where reduced A2 accumulates. The spectrum showing a broad bleaching with two maxima at 420 and 440 nm indicates that A2 is an iron-sulfur center different from P430.  相似文献   

2.
The preillumination induced acceleration of the flash-induced 518 nm absorbance change (ΔA518) decay was studied in lettuce leaves and chloroplasts. In leaves, the acceleration was inhibited by DCMU or reversibly by removal of oxygen. In chloroplasts with added ADP and phosphate and/or reconstructed electron transport, the acceleration was also inhibited by DCMU or the lack of O2.
Anaerobic inhibition of ΔA518 decay acceleration was no longer observed when hydroxylamine replaced water as electron donor to PSII. Anaerobiosis was also shown to reversibly inhibit the initial rate of FeCN reduction in chloroplasts. These results suggest the mechanism of anaerobic inhibition of ΔA518 decay acceleration to be associated with the O2 evolving system.  相似文献   

3.
Abstract— The opsin of the visual pigment (P521) of the Tokay gecko rapidly regenerates four spectrally different photopigments with the 9-cis and 11-cis isomers of both the vitamin A,- and A2-aldehydes. The opsin displays the classic stereospecificity for both A1- and A2-series of isomers. The two photopigments regenerated with 9-cis- and ll-cw-3-dehydroretinals respond to chloride and nitrate ions as do the comparable pigments formed with 9-cis- and 11-ris-retinal. The result is a family of pigments absorbing with spectral maxima ranging from 464 to 540 nm, a span of some 3000 cm-1. The photosensitivity of all four pigments was determined and found to be in relative order: 100% (11-cis-A2), 77% (11- cis -A2), 36% (9- cis -A,) and 14% (9- cis -A2).  相似文献   

4.
Abstract— Phospholipase A2 (PLA2) catalyzes the release of free fatty acids from membrane phospholipids, and its products derived from these fatty acids, such as prostaglandins and leukotrienes, significantly up-regulate the key mela-nogenic enzyme, tyrosinase, in melanocytes. This has led to suggestions that PLA2 itself triggers melanin synthesis in melanogenesis following UV irradiation or inflammation.
We have examined the effect of secretory PLA2 (sPLA2) on melanogenesis in cultured human melanocytes. Secretory PLA2 stimulated DNA synthesis and melanin synthesis, and these phenomena were completely inhibited by treatment with a phospholipase inhibitor, p- bromophenacyl bromide, demonstrating that the catalytic activity of sPLA2 is required for melanogenesis. Secretory PLA2 also stimulated tyrosinase activity, increased the amount of tyrosinase-related protein-1 and up-regulated the expression of both mRNA. These findings suggest that sPLA2 is an important mediator of UV-induced or postinflammatory pigmentation.  相似文献   

5.
Abstract— Low temperature spectroscopy has been used to characterize microsomal fractions obtained from cauliflower inflorescences ( Brasska oleracea L.) by differential centrifugation and partition in an aqueous polymer two-phase system. The plasma membrane-enriched fraction (U3) was found to contain one dominant b -cytochrome, which could be reduced both by blue light and by dithionite. An action spectrum of the blue light-induced absorbance change [LIAC, Δ(A430—A410)] associated with the reversible reduction of this b -type cytochrome indicated that the primary light-receptor was a flavin-like compound. Another microsomal fraction (L3) containing membranes from mitochondria, endoplasmic reticulum and other organelles also contained light-reducible cytochrome. One of these could be identified as cytochrome c oxidase, and another may be identical to cytochrome b 5 of the endoplasmic reticulum.  相似文献   

6.
Abstract— The P700 chlorophyll a -protein complex (CPI) isolated from green plants was oriented in aqueous solutions using pulsed electric fields of up to 6700 V cm-1. The electric linear dichroism spectrum is reported in the range of 400–720nm. Positive peaks in the linear dichroism Δ A = A I - A 1 (where AI and A1 are the absorbance components in which the polarizer orientation is parallel and perpendicular with respect to the electric field. respectively) are observed at 443 and 686 nm. The ΔA signal at 686 nm is discussed in terms of either a specialized chlorophyll form absorbing at 686 nm. or due to an exciton component absorbing at the same wavelength.  相似文献   

7.
Abstract— Using excise sections of oat first-internodes, a dual effect of blue light can be demonstrated on elongation when the sections are first irradiated in distilled H2O, then incubated with gibberellic acid (GA). At low light energies (230 ergs/cm2 per sec, for 2 min), a pretreatment with blue light enhances the GA effect above the elongation it can produce in the dark. At high energies (650 ergs/cm2/sec for 45 min), the same wavelengths cause an inhibition of the GA-induced elongation. An action spectrum for the two effects show a maximum near 435 mμ in both cases. Neither light effect is visible when indoyl-3-acetic acid is used instead of GA. Several physiological effects distinguish the two blue effects. The promotive effect is most marked in the young regions of the mesocotyl, whereas the maximum inhibitive effect is located in slightly older tissues. Time-course experiments showed that the promotive effect is partly due to an extension of the duration of elongation. The inhibitory effect is only temporary and vanishes about 30 hr after the beginning of the experiment. The promotive effect of blue light resembles the effect of far-red light, but the former can be observed with gibberellins A2, A4, A5, A6 and A7 which are practically inactive after an irradiation with far-red light. The inhibitory effect of blue light is different from the red-light effect as shown by the time-course experiments.  相似文献   

8.
Quantitation of photosystem II (PSII) activity in spinach chloroplasts is presented. Rates of PSII electron-transport were estimated from the concentration of PSII reaction-centers (Chl/PSII = 380:1 when measured spectrophotometrically in the ultraviolet [ΔA320] and green [ΔA540–550] regions of the spectrum) and from the rate of light utilization by PSII under limiting excitation conditions. Rates of PSII electron-transport were measured under the same light-limiting conditions using 2,5-dimethylbenzoquinone or 2,5-dichlorobenzoquinone as the PSII artificial electron acceptors. Evaluation is presented on the limitations imposed in the measurement of PSII electron flow to artificial quinones in chloroplasts. Limitations include the static quenching of excitation energy in the pigment bed by added quinones, the fraction of PSII centers (PSIIβ) with low affinity to native and added quinones, and the loss of reducing equivalents to molecular oxygen. Such artifacts lowered the yield of steady-state electron transport in isolated chloroplasts and caused underestimation of PSII electron-transport capacity. The limitations described could explain the low PSII concentration estimates in higher plant chloroplasts (Chl/PSII = 600 ± 50) resulting from proton flash yield and/or oxygen flash-yield measurements. It is implied that quantitation of PSII by repetitive flash-yield methods requires assessment of the slow turnover of electrons by PSIIβ and, in the presence of added quinones, assessment of the PSII quantum yield.  相似文献   

9.
Abstract— Far-red light has the property of promoting the elongation of Avena mesocotyl sections in the presence of a gibberellin. Part of this effect is not reversible by red light (around 655 mμ ). The wavelengths which are most effective are those in the neignbourhood of 720 mμ , as revealed by the action spectrum. Amongst the 8 gibberellins tested, only A1, A3, and A9, are capable of producing, after far-red irradiation, a greater elongation than the one they cause in the dark.  相似文献   

10.
Abstract— The two main primary photoprocesses (electron ejection and H-atom release) for indole, 5-methoxyindole and N-methylindole in various polar and nonpolar solvents were studied as a function of the excitation energy and were correlated with the corresponding fluorescence quantum yields. In hydrocarbon solvents, N–H bond cleavage is the main primary photoprocess from the 1Bb band of the substrates with the exception of N-methylindole. In alcohols, both processes are of negligible importance. Hydrated electrons (eaq) are ejected from the relaxed singlet states of all three compounds in aqueous solutions with a similar yield for excitation at 280 and 254 nm (1La and 1Lb states). The yield increases when the excitation is into the 1Bb band. The quantum yields of the two primary processes from the higher excited states are generally lower than the fraction of molecules not converting to the fluorescent state. This is explained by an efficient back reaction in competition with a thermally activated radical release from an intermediate state or radical pair formed from the S2 (1Bb) state. The non-occurrence of a photoionization energy threshold is discussed.  相似文献   

11.
Abstract— Flash photolysis was used to study the reduction of the triplet state of methylene blue by both alkyl- and aryl-amines. The extent of the formation of the semireduced form of the dye yielded rate constants of interaction between the triplet state and the amine ( k 5). A correlation between log k 5 and ionization potentials for alkylamines (slope = -1.75 eV-1) was interpreted as evidence for the formation of a partial charge-transfer intermediate. The rate constants ( k 5) calculated for aryl-amines approached the rate of diffusion in many cases. A Hammett plot for a series of N, N-dimethyl-anilines yielded a moderately large p value (– 3.28) consistent with the formation of a charge-transfer intermediate. It was concluded that reaction of amines with triplet methylene blue leads to the formation of a partial charge-transfer intermediate which may undergo complete electron transfer to yield radicals, or undergo spin inversion and return to the ground state.  相似文献   

12.
Abstract— The bioluminescent oxidation of reduced flavin mononucleotide by bacterial luciferase involves a long-lived flavoenzyme intermediate whose chromophore has been postulated to be the 4a-sub-stituted peroxy anion of reduced flavin. Reaction of long chain aldehyde with this intermediate results in light emission and formation of the corresponding acid. These experiments show that the typical aldehyde-dependent, luciferase-catalyzed bioluminescence can also be obtained starting with FMN and H2O2 instead of FMNH2 and O2. We postulate that the 4a-peroxy anion intermediate is formed directly by attack of H2O2 on FMN. The latter may be bound to luciferase. An enzyme bound intermediate is formed which by kinetic analysis, flavin specificity for luminescence, aldehyde dependence, and bioluminescent emission spectrum appears to be identical with the species generated by reaction of FMNH, and O2 with luciferase. The quantum yield of the H2O2-- and FMN-initiated biolumlnescence is low but can be enhanced by certain metal ions, which also stimulate a chemiluminescent reaction of oxidized flavin with H2O2. The peak of this chemiluminescence. however, appears to be at a shorter wavelength than that (490 nm) of the bioluminescence.  相似文献   

13.
A consensus has emerged in the recent literature on the fact that the UV difference spectrum of the first oxidation step (S0→ S1) of the photosynthetic oxygen-evolving complex is significantly different and generally smaller than the spectra of the higher oxidation steps (S0→ S1and S2→ S3). Discrepancies still persist, however, notably in the 300 nm region where the S0→ S1 change was either reported to be markedly smaller than the other changes, or, at variance, to have a similar amplitude. A novel approach is proposed here for estimating the ratio of these changes, requiring no estimate of the Kok model parameters, such as the initial S0/S1ratio, or damping coefficients. This was achieved by comparing the absorption difference between two fully deactivated states, differing only in their S0/S1, distribution, with the flash-induced changes measured from these states. The results show that, at two wavelengths around 300 nm, the S0→ S1 change is at least 4 times, and probably 5–6 times smaller than the S0→ S1change.  相似文献   

14.
The factors that red shift the absorption maximum of the retinal Schiff base chromophore in the M412 intermediate of bacteriorhodopsin photocycle relative to absorption in solution were investigated using a series of artificial pigments and studies of model compounds in solution. The artificial pigments derived from retinal analogs that perturb chromophore-protein interactions in the vicinity of the ring moiety indicate that a considerable part of the red shift may originate from interactions in the vicinity of the Schiff base linkage. Studies with model compounds revealed that hydrogen bonding to the Schiff base moiety can significantly red shift the absorption maximum. Furthermore, it was demonstrated that although s-trans ring-chain planarity prevails in the M412 intermediate it does not contribute significantly (only ca 750 cm−1) to the opsin shift observed in M412. It is suggested that in M412, the Schiff base linkage is hydrogen bonded to bound water and/or protein residues inducing a considerable red shift in the absorption maximum of the retinal chromophore.  相似文献   

15.
The aggregation of phytochrome purified from etiolated pea ( Pisum satirum cv. Alaska) and rye ( Secale cereale cv. Cougar) tissues was investigated by centrifugation and turbidimetry. Purified pea phytochrome (A669/A280= 0.88), if irradiated with red light, became precipitable in the presence of CaCl2. The precipitation upon red-light irradiation was optimal at a Ca2- or Mg2+ concentration of 10–20 m M , was greater at increased phytochrome concentration or lower pH values, and was inhibited by 0.1 M KG. The precipitated phytochrome slowly became soluble after far-red light exposure.
Turbidity of pea phytochrome solutions after red-light irradiation also increased rapidly in the presence of either Ca2+ or Mg2+. Far-red light exposure after the red light cancelled the turbidity increase. Rye phytochrome showed less turbidity increase than pea phytochrome and occurred only in the presence of Ca2+. Partially degraded pea phytochrome produced by endogenous proteases in the extract did not show the turbidity increase. Undegraded pea phytochrome also associated with microsomal fractions under conditions similar to those described above, but the partially degraded phytochrome did not.  相似文献   

16.
Abstract— Photolysis of naphthalene on the surface of SiO2 under an atmosphere of air produces phthalic acid as the only major photoproduct, accounting for 49%o of the consumed naphthalene. Photolysis on Al2O3 also produces phthalic acid, in 31% yield. Photolysis of 1 -methylnaphthalene on SiO2 proceeds under similar conditions to produce 2-acetylbenzoic acid (35%) as the major photoproduct with the production of a small amount of I-naphthaldchyde (6%). 1-Cyanonaphthalene does not photooxidize under similar conditions. The presence of oxygen is necessary for the photodecomposition of naphthalene and 1-methylnaphthalene to proceed. Superoxide formed from the photolysis of naphthalene at the SiO2/air interface is readily observed by electron paramagnetic resonance spectroscopy. In the absence of naphthalene no superoxide is observed. A mechanism involving electron transfer from the S1 state of the naphthalene to O2 is proposed on the basis of these observations and related literature precedent.  相似文献   

17.
Abstract— Peroxidation of tannins with alkaline H2O2 is accompanied by weak chemiluminescence in the spectral region 480–800 nm. o-Di and tri-hydroxy groups of polyphenols undergo oxidation by a free-radical mechanism and a green intermediate anion-radical with absorption Δmax= 600 nm is formed. The radical mechanism is supported by the low activation energy 14–20 kJ/mol and the quenching effect of radical scavengers. The reaction of the green intermediate with peroxy anions is the chemiluminescence rate limiting step. In the presence of a-hydroxy-methylperoxide formed from H2O2 and formaldehyde, the alkaline peroxidation of tannins is accompanied by strong red luminescence (420–800 nm). The base catalyzed decomposition of peroxides gives only a weak red emission (460–800 nm). Light intensity is enhanced in D2O by a factor 6.5. Quenchers of O2(1Δg) and 1,3-di-phenylisobenzofurane diminish light intensity in non-aqueous solutions. The data suggest 1O2 participation in the observed chemiluminescence. Thermo-chemical calculations give —ΔH values from 250–1000 kJ/mol for one elementary reaction step which limits the mechanism of chemi-enereization. Chemiexcitation of tannins is relevant to biochemical mechanisms of aerobic degradation of aromatic compounds, energy utilization as well as to defense and resistance processes in plants.  相似文献   

18.
Abstract— We have described the covalent binding of 124-kDa oat phytochrome to large unilamellar liposomes composed of either dioleoyl phosphatidylcholine or dipalmkoyl phosphatidylcholine or soybean lecithin, without affecting the photochromic properties of the protein. These phytochrome-liposome systems have now been studied by laser flash photolysis. The liposomes, independent of their membrane rigidity (liquid-crystal vs gel-like phase), do not influence the ratio and reactivity of the two primary photoproducts, Ii700- of the red absorbing form of phytochrome, Pl Thus, the lifetimes of the Ii700 intermediates and the activation parameters associated with Ii700Iibl are the same as those measured for nonbound phytochrome in buffer solution. The temperature increase from about 273 K. to 297 K lowers the population of the shorter-lived Ii700 intermediate to the same extent both in the liposome-Pl and in nonbound Pl, whereas it does not affect the relative population of the Ii700 intermediates from non-bound Pl in the presence of 25% ethylene glycol added to the buffer solution (ionic strength 0.17).  相似文献   

19.
Abstract— The photogeneration of singlet oxygen (1O2) from thylakoids and the chromophores involved as endogenous sensitizers were investigated using chloroplasts and thylakoids isolated from spinach. The blue light-induced inhibition kinetics of photosynthetic electron transport and that of CTvCF, ATPase were also studied. The spectral dependence of the generation of 1O2 from thylakoid membranes, measured by the imidazole plus RNO method, clearly demonstrated that the Fe-S centers play an important role in 1O2 generation, acting as sensitizers in thylakoids. The photoinhibition of the electron transport in isolated chloroplasts was strikingly depressed by a lipid-soluble '02 quencher and enhanced by deuterium oxide substitution, indicating that the inhibition processes are mainly mediated by 1O2 which is produced via photodynamic activation. The involvement of chloroplast cytochromes in the production of 1O2 was deduced from the action spectrum for the photodynamic inhibition of the electron carrier chain. The results obtained from the kinetic studies appear consistent with the involvement of some components such as the Fe-S centers and cytochrome chromophores of the carrier chain in the generation of 1O2.  相似文献   

20.
Abstract. Photosynthetic reduction of nitrite to ammonia with type C chloroplasts from the heterocont alga Bumilleriopsis filiformis was investigated using 3,6-diaminodurene/ascorbate and 3,6-diaminodurene/dithioerythritol (DAD/DTE) as electron donor couple. Rates approach 6–10 μmol NO-2 reduced/mg chlorophyll/h and are steady for up to 30 min. The presence of oxygen or NADP+ only slightly diminished the rates of nitrite reduction obtained with DAD/DTE. Illuminated chloroplasts reduce oxygen in the presence of DAD/DTE at 135 μmol/mg chlorophyll/h without acceptor supplied. Photosynthetic oxygen uptake by this system in the presence of ferredoxin and NO-2, however, is inhibited to 42% by nitrite reductase with concurrent nitrite reduction. NO-3 and NO-2 have no effect on photosystem I-mediated NADP+ reduction, NO-2 (10 m M ) inhibits ferricyanide-mediated oxygen evolution to 72%. Also photosystem II reactions assayed e.g. with silicomolybdate are inhibited significantly by NO-2 (1 m M ), but only slightly by NO-3. Nitrite reductase is inhibited by p -chloromercuribenzoate ( p CMB), and this inhibition is prevented by DTE. Results suggest that photosynthetic nitrite reduction can cope with low concentrations of either compound, provided relevant thiol groups are protected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号