首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
We describe here new versions of the DEPT phase-encoded HMQC experiment that offer robust performance and improved sensitivity. The new sequences rely on frequency-swept proton and carbon pulses to minimize signal losses from miscalibrated pulses while providing 'J compensation' to optimize the signal strength over a range of heteronuclear coupling constants. By including both proton and carbon-swept pulses, the new sequences also offer an additional signal gain of roughly 10% over well-calibrated hard-pulse experiments. The new sequences also demonstrate that one can construct a sequence that incorporates both 90 degrees and 180 degrees frequency-swept pulses. Although individual pulses in the sequence cause severe phase roll, the phase roll can be eliminated by the proper choice of pulse lengths and sweep directions.  相似文献   

2.
We propose a family of doubly compensated multiplicity-edited heteronuclear single quantum coherence (HSQC) pulse sequences. The key difference between our proposed sequences and the compensation of refocusing inefficiency with synchronized inversion sweeps (CRISIS)-HSQC experiments they are based on is that the conventional rectangular 180 degrees pulses on the proton channel in the latter have been replaced by the computer-optimized broadband inversion pulses (BIPs) with superior inversion performance as well as much improved tolerance to B(1) field inhomogeneity. Moreover, all adiabatic carbon 180 degrees pulses during the INEPT and reverse-INEPT periods in the CRISIS-HSQC sequences have also been replaced with the much shorter BIPs, while the adiabatic sweeps during the heteronuclear spin echo for multiplicity editing are kept in place in order to maintain the advantage of the CRISIS feature of the original sequences, namely J-independent refocusing of the one-bond (1)H--(13)C coupling constants. These modifications have also been implemented to the preservation of equivalent pathways (PEP)-HSQC experiments. We demonstrate through a detailed comparison that replacing the proton 180 degrees pulses with the BIPs provide additional sensitivity gain that can be mainly attributed to the improved tolerance to B(1) field inhomogeneity of the BIPs. The proposed sequences can be easily adapted for (19)F--(13)C correlations.  相似文献   

3.
Dipolar couplings provide valuable information on order and dynamics in liquid crystals. For measuring heteronuclear dipolar couplings in oriented systems, a new separated local field experiment is presented here. The method is based on the dipolar assisted polarization transfer (DAPT) pulse sequence proposed recently (Chem. Phys. Lett. 2007, 439, 407) for transfer of polarization between two spins I and S. DAPT utilizes the evolution of magnetization of the I and S spins under two blocks of phase shifted BLEW-12 pulses on the I spin separated by a 90 degree pulse on the S spin. Compared to the rotating frame techniques based on Hartmann-Hahn match, this approach is easy to implement and is independent of any matching conditions. DAPT can be utilized either as a proton encoded local field (PELF) technique or as a separated local field (SLF) technique, which means that the heteronuclear dipolar coupling can be obtained by following either the evolution of the abundant spin like proton (PELF) or that of the rare spin such as carbon (SLF). We have demonstrated the use of DAPT both as a PELF and as a SLF technique on an oriented liquid crystalline sample at room temperature and also have compared its performance with PISEMA. We have also incorporated modifications to the original DAPT pulse sequence for (i) improving its sensitivity and (ii) removing carrier offset dependence.  相似文献   

4.
The application of a heteronuclear 2D pulse sequence is demonstrated which correlates chemical shifts of carbons with directly bound protons and with remote protons belonging to the same coupled spin system by using the effect of Hartmann—Hahn cross polarization among protons. The enhanced spectral resolution obtained by spreading individual proton subsystems into the carbon domain and the option for multiplicity discrimination makes these kind of experiments most suitable for proton and carbon signal assignments of natural products as alkaloids and steroids with strongly overlapping proton resonances. With the application to a steroid we want to demonstrate that such unambiguous signal assignments are the prerequisite and the basis for detailed structural investigations using additional, more conventional NMR experiments.  相似文献   

5.
In this contribution we present a comprehensive approach to study hydrogen bonding in biological and biomimetic systems through 17O and 17O-1H solid-state NMR combined with density functional theory calculations of 17O and 1H NMR parameters. We explore the signal enhancement of 17O in L-tyrosine.HCl using repetitive double-frequency swept radio frequency pulses in solid-state NMR. The technique is compatible with high magnetic fields and fast magic-angle spinning of the sample. A maximum enhancement by a factor of 4.3 is obtained in the signal-to-noise ratio of the selectively excited 17O central transition in a powdered sample of 17Oeta-L-tyrosine.HCl at an external field of 14.1 T and a spinning frequency of 25 kHz. As little as 128 transients lead to meaningful 17O spectra of the same sample at an external field of 18.8 T and a spinning frequency of 50 kHz. Furthermore we employed supercycled symmetry-based pulse sequences on the protons to achieve heteronuclear longitudinal two-spin-order (IzSz) recoupling to determine 17O-1H distances. These sequences recouple the heteronuclear dipolar 17O-1H couplings, where dipolar truncation is absent, while decoupling the homonuclear proton dipolar interactions. They can be applied at fast magic-angle-spinning frequencies up and beyond 50 kHz and are very robust with respect to 17O quadrupolar couplings and both 17O and 1H chemical shift anisotropies, which makes them suitable for the use at high external magnetic fields. The method is demonstrated by determining the 17Oeta-1H distance in L-tyrosine.HCl at a spinning frequency of 50 kHz and an external field of 18.8 T.  相似文献   

6.
The acquisition time and quality of 1D 13C{1H} spectra can be improved substantially by using a modified driven equilibrium Fourier transform (DEFT) sequence, which is specifically designed to compensate for the effects of B1 inhomogeneity, pulse miscalibration and frequency offsets. The new sequence, called uniform driven equilibrium Fourier transform (UDEFT), returns the carbon magnetization with a high accuracy along its equilibrium position after each transient is complete. Thus, the sequence allows the use of relaxation delays (RD), which are much shorter than the carbon T1 of the molecule, thereby speeding up the acquisition process of 1D 13C{1H} spectra. To achieve this level of performance, UDEFT employs a refocusing element constituted by a composite adiabatic carbon pulse surrounded by two 90 degrees carbon pulses whose phases are designed to compensate for 90 degrees pulse miscalibrations in an MLEV manner (90 degrees+x-tau(FID)-180+y(Adia)-tau-90 degrees+x-180 degrees+x(Adia)). A version of the UDEFT sequence allows recording 1D 13C{1H} spectra devoid of heteronuclear NOE by using a matched adiabatic 1H decoupling scheme where an even number of 180 degrees adiabatic pulses is applied during the UDEFT module. Spectra of a solution of 300 mM camphor that contains some carbon nuclei with very long T1 relaxation times (90 s and 78 s) were acquired with 128 scans in 10 min using a 5 s relaxation delay.  相似文献   

7.
Modifications (CSEc and CSEh) of recently published SQSQc and SQSQh pulse sequences are proposed and tested on detection of small (~2 Hz) signed silicon-carbon coupling constants. The new sequences increase signal intensity by simplifying the spectra. The signals are about four times stronger than in SQSQc or SQSQh spectra, achieving the sensitivity of E.COSY-type experiment. The information about sign and magnitude of the coupling is preserved. CSEc and CSEh spectra for two silicon compounds are presented and compared. The two new sequences allow editing of heteronuclear correlation spectra according to the sign of the selected heteronuclear coupling constants.  相似文献   

8.
The application of adiabatic inversion pulses to the detection of (1)H-(15)N heteronuclear correlations is described. The pulse sequences studied were gHSQC, CRISIS-gHSQC, gHMBC and CRISIS-gHMBC. The poor inversion quality of rectangular 180 degrees X pulses can lead to a loss of signal at the peripheries of the spectrum. Replacing these pulses with adiabatic sweeps significantly improves sensitivity across the potentially large (15)N spectral window. Satellite spectrum profiles are shown to demonstrate the increase in sensitivity when employing adiabatic pulses on wide spectral widths. Additionally, the active pharmaceutical nizatidine was used as a model compound to demonstrate the improvements in the long-range correlation data.  相似文献   

9.
A new nuclear magnetic resonance approach for characterizing the thickness of phosphate, silicate, carbonate, and other nanoparticles in organic-inorganic nanocomposites is presented. The particle thickness is probed using the strongly distant-dependent dipolar couplings between the abundant protons in the organic phase and X nuclei (31P, 29Si, 13C, 27Al, 23Na, etc.) in the inorganic phase. This approach requires pulse sequences with heteronuclear dephasing only by the polymer or surface protons that experience strong homonuclear interactions, but not by dispersed OH or water protons in the inorganic phase, which have long transverse relaxation times T2,H. This goal is achieved by heteronuclear recoupling with dephasing by strong homonuclear interactions of protons (HARDSHIP). The pulse sequence alternates heteronuclear recoupling for approximately 0.15 ms with periods of homonuclear dipolar dephasing that are flanked by canceling 90 degrees pulses. The heteronuclear evolution of the long-T2,H protons is refocused within two recoupling periods, so that 1H spin diffusion cannot significantly dephase these coherences. For the short-T2,H protons of a relatively immobile organic matrix, the heteronuclear dephasing rate depends simply on the heteronuclear second moment. Homonuclear interactions do not affect the dephasing, even though no homonuclear decoupling is applied, because long-range 1H-X dipolar couplings approximately commute with short-range 1H-1H couplings, and heteronuclear recoupling periods are relatively short. This is shown in a detailed analysis based on interaction representations. The algorithm for simulating the dephasing data is described. The new method is demonstrated on a clay-polymer nanocomposite, diamond nanocrystals with protonated surfaces, and the bioapatite-collagen nanocomposite in bone, as well as pure clay and hydroxyapatite. The diameters of the nanoparticles in these materials range between 1 and 5 nm. Simulations show that spherical particles of up to 10 nm diameter can be characterized quite easily.  相似文献   

10.
Three solvent-suppression pulse sequences of varying complexity were incorporated into the standard inversion recovery pulse program and experimentally evaluated. The least complex suppression sequence involves a composite 90 degrees pulse. A more complex sequence utilizes an excitation sculpting sequence requiring pulsed field gradients, and the most complex sequence incorporates an excitation sculpting sequence with selective rf pulses and gradient pulses. The quality of the spectral data and the accuracy of T(1) measurements of the investigated suppression schemes were evaluated using three aqueous samples with increasing proton content in the water solvent, i.e. by volume 100% D(2)O, 80/20% D(2)O/H(2)O, and 100% H(2)O. For lines removed from the water resonance the T(1) values were generally very consistent between all pulse sequences tested. For lines less than about 200 Hz from the water signal the T(1) measurements become less reliable but are still possible for most of the tested pulse programs.  相似文献   

11.
A combination of density functional and optimal control theory has been used to generate amplitude- and phase-modulated excitation pulses tailored specifically for the (33)S nuclei in taurine, based on one of several reported crystal structures. The pulses resulted in significant signal enhancement (stemming from population transfer from the satellite transitions) without the need for any experimental optimization. This allowed an accurate determination of the (33)S NMR interaction parameters at natural abundance and at a moderate magnetic field strength (11.7 T). The (33)S NMR parameters, along with those measured from (14)N using frequency-swept pulses, were then used to assess the accuracy of various proposed crystal structures.  相似文献   

12.
A modified version of CPMG-HSQMBC pulse scheme is presented for the measurement of long-range heteronuclear coupling constants. The method implements adiabatic inversion and refocusing pulses on the heteronucleus. Low-power composite 180° XY-16 CPMG pulse train is applied on both proton and X nuclei during the evolution of long-range couplings to eliminate phase distortions due to co-evolution of homonuclear proton-proton couplings. The pulse sequence yields pure absorption antiphase multiplets allowing precise and direct measurement of the (n)J(XH) coupling constants regardless from the size of the proton-proton couplings. The applicability of the method is demonstrated using strychnine as a model compound. The selective 1D version of the method is also presented.  相似文献   

13.
Among the NMR spectroscopic parameters, long‐range heteronuclear coupling constants convey invaluable information on torsion angles relevant to glycosidic linkages of carbohydrates. A broadband homonuclear decoupled PSYCHE CPMG–HSQMBC method for the precise and direct measurement of multiple‐bond heteronuclear couplings is presented. The PSYCHE scheme built into the pulse sequence efficiently eliminates unwanted proton–proton splittings from the heteronuclear multiplets so that the desired heteronuclear couplings can be determined simply by measuring frequency differences between peak maxima of pure antiphase doublets. Moreover, PSYCHE CPMG–HSQMBC can provide significant improvement in sensitivity as compared to an earlier Zangger–Sterk‐based method. Applications of the proposed pulse sequence are demonstrated for the extraction of nJ(1H,77Se) and nJ(1H,13C) values, respectively, in carbohydrates; further extensions can be envisioned in any J‐based structural and conformational studies.  相似文献   

14.
The power and versatility of NMR spectroscopy is strongly related to the ability to manipulate NMR interactions by the application of radio‐frequency (rf) pulse sequences. Unfortunately, the rf fields seen by the spins differ from the ones programmed by the experimentalist. Pulse transients, i.e., deviations of the amplitude and phase of the rf fields from the desired values, can have a severe impact on the performance of pulse sequences and can lead to inconsistent results. Here, we demonstrate how transient‐compensated pulses can greatly improve the efficiency and reproducibility of NMR experiments. The implementation is based on a measurement of the characteristics of the resonance circuit and does not rely on an experimental optimization of the NMR signal. We show how the pulse sequence has to be modified to use it with transient‐compensated pulses. The efficiency and reproducibility of the transient‐compensated sequence is greatly superior to the original POST‐C7 sequence.  相似文献   

15.
In the chemistry literature it is common to provide NMR data on both proton and carbon spectra based on one‐dimensional experiments, but often only proton spectra are assigned. The absence of a complete attribution of the carbons is in good part due to the difficulty in reaching the necessary resolution in the carbon dimension of two‐dimensional experiments. It has already been shown that high‐resolution heteronuclear spectra can be acquired within nearly the same acquisition time using a violation of the Nyquist condition. For a spectral width reduction by a given factor k, the resolution increases by the same factor as long as it is not limited by relaxation. The price to pay for such an improvement is a k‐fold ambiguity in the chemical shift of the signal along the folded or aliased dimension. The computer algorithm presented in this paper takes advantage of the peak list stemming from one‐dimensional spectra in order to calculate spectral widths for which the ambiguities in the aliased dimension of heteronuclear experiments are eliminated or at least minimized. The resolution improvement factor is only limited by the natural lineshape and reaches a typical value higher than 100. The program may be set to run automatically on spectrometers equipped with automatic sample changers. Applications to short‐range HSQC experiments and long‐range HMBC spectra of steroids, carbohydrates, a peptide and a mixture of isomers are shown as examples. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Longer coherence life times (i.e. smaller homogeneous linewidths) can be achieved for carbon resonances which are strongly coupled to protons with high rf field heteronuclear decoupling in micro magic angle spinning NMR. Better proton decoupling enhances the sensitivity and resolution of two-dimensional through-bond correlation experiments for mass-limited samples with uniform carbon labeling.  相似文献   

17.
Heteronuclear single quantum coherence (HSQC) sequences using adiabatic (or composite) 180 degrees pulses, suitable for applications requiring wide spectral widths in F2, are described. The sequences can be used with or without multiplicity editing. One variant will work even in the presence of homonuclear couplings that are equal to the heteronuclear 1-bond coupling.  相似文献   

18.
Ultra‐high‐field NMR spectroscopy requires an increased bandwidth for heteronuclear decoupling, especially in biomolecular NMR applications. Composite pulse decoupling cannot provide sufficient bandwidth at practical power levels, and adiabatic pulse decoupling with sufficient bandwidth is compromised by sideband artifacts. A novel low‐power, broadband heteronuclear decoupling pulse is presented that generates minimal, ultra‐low sidebands. The pulse was derived using optimal control theory and represents a new generation of decoupling pulses free from the constraints of periodic and cyclic sequences. In comparison to currently available state‐of‐the‐art methods this novel pulse provides greatly improved decoupling performance that satisfies the demands of high‐field biomolecular NMR spectroscopy.  相似文献   

19.
MAS solid-state NMR experiments applied to biological solids are still hampered by low sensitivity and resolution. In this work, we employ a deuteration scheme in which individual methyl groups are selectively protonated. This labeling scheme allows the acquisition of proton carbon correlation spectra with a resolution comparable to that in solution-state NMR experiments. We observe an increase in resolution by a factor of 10-15 compared to standard heteronuclear correlation experiments using PMLG for 1H,1H dipolar decoupling in the indirect dimension. At the same time, the full sensitivity of the proton-based experiment is retained. In comparison to the heteronuclear detected version of the experiment, a gain in sensitivity of a factor of approximately 4.7 is achieved.  相似文献   

20.
Modified two-dimensional (2D) triple-resonance H(C)P and H(P)C experiments based on INEPT/HMQC and double-INEPT schemes are applied to the study of organophosphorus compounds at natural abundances. The implementation of effective (1)H--(13)C gradient selection, additional purging pulsed field gradients, spinlock pulses, and improved phase cycling is demonstrated to allow weak correlation signals based on long-range couplings to be readily observed. Through the combination of two heteronuclear long-range coupling constants, (n)J(CH) and (n)J(PC) in H(C)P experiments or (n)J(PH) and (n)J(PC) in H(P)C experiments, protons can be correlated to a second heteronucleus through 4-7 chemical bonds. These experiments thus overcome the inherit limitations of classical (1)H-X HMBC experiments, which require a nonzero value of the heteronuclear coupling constant (n)J(XH). Ultra-broadband inversion composite pulses are successfully employed in the H(P)C INEPT/HMQC and H(P)C double-INEPT pulse sequences to increase the utility of the experiments and the quality of obtained spectra. This work extends and completes a set of 2D phase-sensitive triple-resonance experiments applicable at natural abundances, and also offers insight into the methodology of triple-resonance experiments and the application of pulsed field gradients. A one-dimensional triple-resonance experiment employing carbon detection is suggested for accurate determination of small (n)J(PC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号