首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
We describe a new interface for a prototype quadrupole-quadrupole-time-of-flight (TOF) mass spectrometer (Centaur, Sciex) that allows rapid switching between electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) modes of operation. Instrument performance in both modes is comparable (i.e., resolution approximately 10,000 FWHM, mass accuracy <10 ppm, sensitivity approximately 1 fmol) because the ion source is decoupled from the TOF mass analyzer by extensive gas collisions in the quadrupole stages of the instrument. The capacity to obtain side-by-side high quality ESI and MALDI mass spectra from a single proteolytic mixture greatly facilitates the identification of proteins and elucidation of their primary structures. Improved strategies for protein identification result from this ability to measure spectra using both ionization modes in the same instrument and to perform MS/MS on singly charged as well as multiply charged ions. Examples are provided to demonstrate the utility and performance of the modified instrument.  相似文献   

2.
On‐line ultra‐performance liquid chromatography (UPLC) coupled with diode‐array detection (UPLC/DAD) and electrospray ionization quadrupole time‐of‐flight mass spectrometry (ESI‐Q‐TOF‐MS) were used for separation, identification and structural analyses of saponins in Rhizoma Paridis saponins (RPS) and rat plasma after oral administration of RPS. Thirty steroidal saponins in RPS were identified by comparing their retention time, accurate mass measurement and positive and negative mass spectrometry data with that of reference compounds. The UPLC/Q‐TOF‐MS method was proved to be rapid and efficient in that 30 steroidal saponins, including three kinds of saponins (prototype, pennogenyl and diosgenyl saponins) were tentatively characterized within 6 min. After oral administration of RPS, 21 original saponins were absorbed in RPS‐treated rat plasma. Our results indicated that UPLC/Q‐TOF‐MS is a rapid and effective tool for identification of a series of saponins at trace level. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The analytical performances of two triple-quadrupole instruments, which differ in their atmospheric-pressure sources, were evaluated for native amino acid analysis. The Applied Biosystems/Sciex API 300 instrument was equipped with a turboIon Spray source and a curtain gas interface while the Waters/Micromass Quattro Ultima instrument was characterized by its Z-spray source. Liquid chromatography/mass spectrometry analysis of native amino acids requires volatile ion-pairing mobile phase additives (mainly perfluorinated carboxylic acids). The effects of the structure and concentration of the ion-pairing reagents as well as the organic modifier percentage on the electrospray response of amino acids were studied in detail. The most favourable chromatographic conditions depend strongly on the mass spectrometer used. Several instrumental parameters were also studied, including spray voltage, transmission lens voltages, temperature of desolvation and auxiliary gas flow rates. The results show substantial qualitative differences depending on the instrument geometry. The quantitative performances of the two triple-quadrupole mass spectrometers were evaluated in terms of limits of detection and quantification. The effects of the matrix on the analyte ionization were also examined, and the long-term stability of the electrospray performance was studied over 12 h using a mobile phase containing the perfluorinated ion-pairing reagents. The study provides information on the robustness of the MS instrument and its detection sensitivity towards native amino acid analysis. It appears that each instrument has its good and bad points since one provides higher sensitivity while another is more robust.  相似文献   

4.
An on-probe pyrolyzer has been constructed and interfaced with desorption electrospray ionization (DESI) mass spectrometry (MS) for the rapid analysis of non-volatile pyrolysis products. The detection and analysis of non-volatile pyrolysis products of peptides, proteins and the synthetic polymer poly(ethylene glycol) were demonstrated with this instrument. The on-probe pyrolyzer can be operated off-line or on-line with the DESI source and was interfaced with a tandem MS (MS/MS) instrument, which allowed for structure characterization of the non-volatile pyrolytic products. Advantages of this system are its simplicity and speed of analysis since the pyrolysis is performed in situ on the DESI source probe and hence, it avoids extraction steps and/or the use of matrices (e.g., as in MALDI–MS analyses).  相似文献   

5.
An on-probe pyrolyzer has been constructed and interfaced with desorption electrospray ionization (DESI) mass spectrometry (MS) for the rapid analysis of non-volatile pyrolysis products. The detection and analysis of non-volatile pyrolysis products of peptides, proteins and the synthetic polymer poly(ethylene glycol) were demonstrated with this instrument. The on-probe pyrolyzer can be operated off-line or on-line with the DESI source and was interfaced with a tandem MS (MS/MS) instrument, which allowed for structure characterization of the non-volatile pyrolytic products. Advantages of this system are its simplicity and speed of analysis since the pyrolysis is performed in situ on the DESI source probe and hence, it avoids extraction steps and/or the use of matrices (e.g., as in MALDI–MS analyses).  相似文献   

6.
A simple and rapid gradient elution high-performance liquid chromatographic method using photodiode array and electrospray ionization mass spectrometric detectors was developed for separation and determination of the process-related substances and photodegradation products of stilbenesulfonic acids, viz. 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNSDA), 4-amino-4'-nitrostilbene-2,2'-disulfonic acid (ANSDA), and 4,4'-diaminostilbene-2,2'-disulfonic acid (DASDA) in industrial waste waters. Gradient elution was carried out using ammonium acetate and acetonitrile as mobile phase and an Inertsil-ODS 3V column for separation. The negative-ion electrospray ionization mass spectra containing [M-H]- ions of sulfonic acids allowed molecular mass determination of unknowns and the structures were proposed on the basis of the fragment ions in the MS/MS spectra.  相似文献   

7.
A hydrophilic interaction chromatographic (HILIC) system interfaced with atmospheric pressure ionization (API) sources and a tandem mass spectrometer (MS/MS) was developed for the simultaneous determination of nicotinic acid (NiAc) and its metabolites in dog plasma in support of a pharmacokinetic study. A silica column was adapted for separation of NiAc and its two metabolites, nicotinamide (NiNH2) and nicotinuric acid (NiUAc), under HILIC conditions. The influence of experimental factors such as the composition of mobile phase on ionization efficiency and chromatographic performance of all analytes was investigated. The feasibility of the proposed HILIC/MS/MS methods was explored by comparing the plasma levels of NiAc, NiNH2, and NiUAc in dog obtained by using either electrospray ionization or atmospheric pressure chemical ionization interfaces in positive ion mode. The methods were partially validated in terms of inter-day accuracy and precision, extraction recovery, benchtop and freeze/thaw stability. Further, the potential of ionization suppression resulting from endogenous components of the biological matrixes on the HILIC/API-MS/MS methods were investigated using the post-column infusion technique.  相似文献   

8.
Pharmaceuticals require careful and precise determination of their impurities that might harm the user upon consumption. Although today, the most common technique for impurities identification is liquid chromatography‐mass spectrometry (LC‐MS/MS), it has several downsides due to the nature of the ionization method. Also, the analyses in many cases are targeted thus despite being present, some of the compounds will not be revealed. In this paper, we propose and show a new method for untargeted analysis and identification of impurities in active pharmaceutical ingredients (APIs). The instrument used for these analyses is a novel electron ionization (EI) LC‐MS with supersonic molecular beams (SMB). The EI‐LC‐MS‐SMB was implemented for analyses of several drug samples spiked with an impurity. The instrument provides EI mass spectra with enhanced molecular ions, named Cold EI, which increases the identification probabilities when the compound is identified with the aid of an EI library like National Institute of Standards and Technology (NIST). We analyzed ibuprofen and its impurities, and both the API and the expected impurity were identified with names and structures by the NIST library. Moreover, other unexpected impurities were found and identified proving the ability of the EI‐LC‐MS‐SMB system for truly untargeted analysis. The results show a broad dynamic range of four orders of magnitude at the same run with a signal‐to‐noise ratio of over 10 000 for the API and almost uniform response.  相似文献   

9.
The use of gas chromatography coupled to high‐resolution magnetic sector mass spectrometers (GC‐HRMS) is well established for dioxin and furan analysis. However, the use of gas chromatography coupled to triple quadrupole (MS/MS) and time of flight (TOF) mass spectrometers with atmospheric pressure ionization (API) and traditional electron ionization (EI) for dioxin and furan analysis is emerging as a viable alternative to GC‐HRMS screening. These instruments offer greater versatility in the lab for a wider range of compound identification and quantification as well as improved ease of operation. The instruments utilized in this study included 2 API‐MS/MS, 1 traditional EI‐MS/MS, an API‐quadrupole time of flight mass spectrometer (API‐QTOF), and a EI‐high‐resolution TOF (EI‐HRTOF). This study compared these 5 instruments to a GC‐HRMS using method detection limit (MDLs) samples for dioxin and furan analysis. Each instrument demonstrated acceptable MDL values for the 17 chlorinated dioxin and furans studied. The API‐MS/MS instruments provide the greatest overall improvement in MDL value over the GC‐HRMS with a 1.5 to 2‐fold improvement. The API‐QTOF and EI‐TOF demonstrate slight increases in MDL value as compared with the GC‐HRMS with a 1.5‐fold increase. The 5 instruments studied all demonstrate acceptable MDL values with no MDL for a single congener greater than 5 times that for the GC‐HRMS. All 5 instruments offer a viable alternative to GC‐HRMS for the analysis of dioxins and furans and should be considered when developing new validated methodologies.  相似文献   

10.
Qualitative and quantitative analyses of phenolic compounds are of interest for both medicinal and food plants. In the present work, the phenolic fraction from Yucca schidigera, a plant bearing the GRAS (Generally Recognized as Safe) label approved by the US Food and Drug Administration, was studied. Crude extracts of Y. schidigera bark were investigated by liquid chromatography/UV spectrophotometry with diode-array detection, liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) and liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS), in order to develop and optimize simple and rapid techniques to determine both stilbenes and yuccaols for the purposes of quality control of collected material. With optimal LC and MS conditions, stilbenes and yuccaols were quantified with all the proposed methods and the results were compared. Sensitivity was evaluated and the results indicated that MS/MS detection in the multiple reaction monitoring mode is easily applicable to this plant and allows the rapid and direct identification and quantification of these peculiar compounds in crude plant extracts.  相似文献   

11.
A critical limitation of electrospray ionization (ESI) liquid chromatography/mass spectrometry (LC/MS) sources is the susceptibility to blockage of interface orifices due to the deposition of involatile components from the sample and/or mobile phase. These components, including salts, buffers, and ion-pairing agents, can be essential to the performance of the chosen analytical method. We report here the performance enhancements provided by a novel atmospheric pressure ionization (API) source in the analysis of erythromycin A (ERY) using mobile phases that contain involatile components. The enhanced robustness of the new source is derived from the use of a continuous flow of aqueous solvent at the sampling cone orifice that maintains unobstructed ion transmission. The ESI mass spectral responses measured for ERY, using an LC separation that incorporates 10 mM sodium phosphate with and without 10 mM octane sulfonate, were monitored by repeated injections over 13-15 h total analysis time. Minimal effects on ESI mass spectral responses (integrated peak area) or chromatographic performance (peak shape, retention time) were observed during these studies. In the absence of the aqueous cleaning flow, complete loss of mass spectral responses and total blocking of the sampling cone was observed in less than 30 min. Responses for ERY spiked into chicken and beef liver, and catfish muscle at or below the regulatory level of interest (100 ppb), were quantified by internal standard calibration using this procedure. These results demonstrate the ability of a novel API-MS ion source to perform analyses that require the use of involatile mobile phase additives.  相似文献   

12.
尿液作为一种易于获取的体内毒品检材,在吸毒人员快速筛查中被广泛应用。针对传统快速筛查技术存在假阳性率高、定量能力不足以及实验室质谱技术在快速检测中存在前处理复杂、检测耗时长、使用环境苛刻等问题,该文提出了一种基于敞开式直接电离质谱技术的生物样本快速检测方法。该研究采用探针式电喷雾离子源与便携式质谱仪联用快速检测平台,优化了喷雾电压和质谱入口毛细管温度,开发了高效快速的前处理技术。基于该平台和前处理技术,5种常规毒品(甲基苯丙胺、氯胺酮、可卡因、O^(6)-单乙酰吗啡和3,4-亚甲双氧甲基苯丙胺)的尿液加标溶液的检出限为0.5~30 ng/mL,且其中4种毒品定量检测的线性相关系数大于0.99。除此之外,5种常规毒品在3个不同水平下的加标回收率为56.1%~103.7%,多次检测结果的相对标准偏差为9.0%~27.8%,说明联用检测平台与前处理方法结合可以达到良好的准确度。为了进一步检验该联用仪器的实战能力,测试了某社区戒毒康复中心40份阳性和110份阴性实际尿液样本,总体检测的准确率接近99%,且通过一次进样在20 s内可同时检测多种毒品。该研究成果有利于推动快速检测技术的发展,促进敞开式直接电离质谱仪技术的推广应用,提升一线执法服务水平。  相似文献   

13.
The gingerols, including [6]-, [8]-, and [10]-gingerols, a series of chemical homologs differentiated by the length of their unbranched alkyl chains, have been identified as major active components in fresh ginger rhizome. The purpose of this study was to investigate the utility of ion trap liquid chromatography/tandem mass spectrometry (LC/MS/MS) as an online tool to identify and quantify these compounds in raw or processed ginger rhizome samples. Negative mode electrospray ionization (ESI) was used in MS, MS/MS and MS(n) experiments in quadrupole ion trap instruments from two different manufacturers and in high-resolution and accurate mass MS and MS/MS experiments in a Fourier transform ion cyclotron resonance mass spectrometer to elucidate the ionization and fragmentation mechanisms of these compounds in these instruments. Positive mode ESI, which generated many more fragment ions in full scan MS even under gentle ionization conditions, was also used in LC/MS and MS/MS experiments and in direct infusion MS and MS/MS experiments. Consistent and predictable ionization and fragmentation behaviors were observed for all gingerols when analyzed in the same instrument. Instruments from different manufacturers, however, had different ionization mechanisms. The major difference between instruments was their ability to form covalent dimer adducts of the gingerols. Subsequent fragmentation patterns of the precursor ions were essentially identical. These results clearly demonstrate that LC/MS instruments produce data that cannot necessarily be replicated in other laboratories, especially if those laboratories do not have the same instrument model from the same manufacturer. This presents major problems for metabolite target analysis, metabolic profiling and metabolomics investigations, which would benefit from LC/MS mass spectrum libraries as they do from GC/MS mass spectrum libraries, because such libraries may not be valid across platforms.  相似文献   

14.
The development of rapid and sensitive bioanalytical methods in a short time frame with acceptable levels of precision and accuracy is imperative for successful drug discovery. We previously reported that the use of a mobile phase containing an extremely low concentration of ammonium formate or formic acid increased analyte electrospray ionization (ESI) response and controlled against matrix effects. We designated these favorable effects 'LC-electrolyte effects'. In order to support rapid pharmacokinetic (PK) studies for drug discovery, we applied LC-electrolyte effects to the development of generic procedures that can be used to quickly generate reliable PK data for compound candidates. We herein demonstrate our approach using four model tested compounds (Compd-A, -B, -C, and -D). The analytical methods involve generic protein precipitation for sample clean-up, followed by application of fast liquid chromatographic (LC) gradients and the subsequent use of electrospray ionization tandem mass spectrometry (ESI-MS/MS) for individual measurement of the tested compounds in 20-microL plasma samples. Good linearity over the concentration range of 1.6 or 8-25000 ng/mL (r(2) > 0.99), precision (RSD, 0.45-13.1%), and accuracy (91-112%) were achieved through the use of a low dose of formic acid (0.4 mM or 0.015 per thousand) in the methanol/water-based LC mobile phase. The analytical method was quite sensitive, providing a lower limit of quantification of 1.6 pg on-column except for Compd-C (8 pg), and showed negligible ion suppression caused by matrix components. Finally, the assay suitability was demonstrated in simulated discovery PK studies of the tested compounds with i.v./p.o. dosing of rats. This new assay approach has been adopted with good results in our laboratory for many recent discovery PK studies.  相似文献   

15.
This paper describes the application of the ionspray (pneumatically-assisted electrospray) interface for liquid chromatography (LC) and atmospheric-pressure ionization mass spectrometry (API MS) to samples obtained in a study on the metabolism of omeprazole. In this study [34S]omeprazole was utilized for the stable isotope cluster technique. Over forty metabolites in a sample of partially purified rat urine were resolved by gradient elution LC with ionspray API MS detection, and each of them produced molecular ion 1:1 clusters (MH+ and [MH + 2]+). The chromatographic fidelity of the total-ion current (TIC) was excellent. The endogenous matrix of the sample was quite low, allowing a background-subtracted averaged mass spectrum of the entire TIC trace to produce a 'metabolite mass profile' depicting all the molecular ion 1:1 clusters in the sample. From this mass profile, it was possible to obtain direct information concerning oxygenation and conjugation reactions of the parent compound.  相似文献   

16.
Liquid chromatography/atmospheric pressure photoionization tandem mass spectrometry (LC/APPI-MS/MS) was investigated as an instrumental method for the analysis of the halogenated norbornene flame retardants, Mirex, Dechloranes 602, 603, 604, and Dechlorane Plus (DP). The LC separation was optimized by screening a variety of stationary and mobile phases, resulting in a short LC separation time of 5 min. Different atmospheric pressure ionization approaches were examined including electrospray ionization, atmospheric pressure chemical ionization, and APPI, each with and without post-column addition. APPI without post-column addition was chosen for providing the best ionization response. The optimized LC/APPI-MS/MS approach resulted in instrument detection limits ranging between 25 and 50 pg. Good linearity was also achieved (up to 25.0 ng/μL; R >0.999). The method was applied to extracts of environmental samples including surface water, fish and sediments for screening purposes, and the results agreed well with those obtained by gas chromatography/mass spectrometry.  相似文献   

17.
The cytochalasin class of fungal metabolites was analyzed by electrospray ionization tandem mass spectrometry (ESI-MS/MS) with the aim of developing a methodology for their rapid identification in microbial extracts. ESI-MS analyses of reference cytochalasins were performed and several product ions were produced in MS/MS experiments on parent ions that are structurally characteristic. A precursor ion search was performed to detect cytochalasins in an ethyl acetate extract of fungal strain RK97-F21. Three cytochalasins were detected and one of the components was identified as epoxycytochalasin H by comparing the tandem mass spectra of the product ions with those of reference compounds. This finding was further validated by LC/MS and LC/MS/MS experiments.  相似文献   

18.
建立了纺织品中7种苯氧羧酸类除草剂的高效液相色谱-电喷雾串联质谱(LC-ESI-MS/MS)快速检测方法.样品经甲酸酸化的丙酮溶液超声提取两次,无需其它净化过程.液相色谱使用C18反相色谱柱,流动相为醋酸铵水溶液和甲醇,在梯度条件下分析.在选择反应检测(SRM)负离子模式下进行质谱信号采集,采用两对同位素离子对进行定性和定量分析.选取3种有代表性的纺织品进行方法检出限(LOD)、定量限(LOQ)、线性、回收率和精密度的验证.方法的LOQ为 0.9~2.4 μg/kg; 回收率为85%~106%; 相对标准偏差为2%~11%.本方法简便、有效、可靠、灵敏,能够满足国际生态纺织品标准(Oeko-Tex Standard 100)的限量要求,适用于纺织品中苯氧羧酸类除草剂的日常检测及确证.  相似文献   

19.
We have investigated the composition of the mobile natural organic matter (NOM) present in Callovo‐Oxfodian pore water using electrospray ionization mass spectrometry (ESI‐MS), atmospheric pressure chemical ionization mass spectrometry (APCI‐MS) and emission‐excitation matrix (EEM) spectroscopy. The generation of knowledge of the composition, structure and size of mobile NOM is necessary if one wants to understand the interactions of these compounds with heavy metals/radionuclides, in the context of environmental studies, and particularly how the mobility of these trace elements is affected by mobile NOM. The proposed methodology is very sensitive in unambiguously identifying the in situ composition of dissolved NOM in water even at very low NOM concentration, due to innovative non‐disturbing water sampling and ionization (ESI/APCI‐MS) techniques. It was possible to analyze a quite exhaustive inventory of the small organic compounds of clay pore water without proceeding to any chemical treatment at naturally occurring concentration levels. The structural features observed were mainly acidic compounds and fatty acids as well as aldehydes and amino acids. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The rapid desorption electrospray ionisation (DESI) of some small molecules and their fragmentation using a triple-quadrupole and a hybrid quadrupole time-of-flight mass spectrometer (Q-ToF) have been investigated. Various scanning modes have been employed using the triple-quadrupole instrument to elucidate fragmentation pathways for the product ions observed in the collision-induced dissociation (CID) spectra. Together with accurate mass tandem mass spectrometry (MS/MS) measurements performed on the hybrid Q-ToF mass spectrometer, unequivocal product ion identification and fragmentation pathways were determined for deprotonated metoclopramide and protonated aspirin, caffeine and nicotine. Ion structures and fragmentation pathway mechanisms have been proposed and compared with previously published data. The necessity for elevated resolution for the differentiation of isobaric ions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号