首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2017,29(10):2178-2189
The challenge of heavy metal detection for environmental, industrial and medical purposes has led to the development of many analytical techniques. Stripping voltammetry is a very sensitive electrochemical method and has been widely used for heavy metal detection. Carbon nanotubes, a well‐studied carbon material with physical and chemical properties suited for electrode material is commonly employed for sensitive and selective metal detection in electrochemistry. This article reviews the recent (2011–2016) applications of carbon nanotubes as an electrode or electrode surface modifier for heavy metals detection with stripping voltammetry.  相似文献   

2.
Trace metals play an important role in the regulation of primary productivity and phytoplankton community composition. Metal species directly affects the biogeochemical cycling processes, transport, fate, bioavailability and toxicity of trace metals. Therefore, developing powerful methods for metal speciation analysis is very useful for research in a range of fields, including chemical and environmental analysis. Voltammetric methods, such as anodic stripping voltammetry (ASV) and competing ligand exchange-adsorptive cathodic stripping voltammetry (CLE-AdCSV), have been widely adopted for speciation analysis of metals in different natural aquatic systems. This paper provides an overview of the theory of voltammetric methods and their application for metal speciation analysis in natural waters, with a particular focus on current voltammetric methods for the discrimination of labile/inert fractions, redox species and covalently bound species. Speciation analysis of typical trace metals in natural waters including Fe, Cu, Zn, Cd, and Pb are presented and discussed in detail, with future perspectives for metal speciation analysis using voltammetric methods also discussed. This review can elaborate the particular knowledge of theory, merits, application and future challenge of voltammetric methods for speciation analysis of trace metals in natural waters.  相似文献   

3.
The contribution of electrochemical methods to the knowledge of dynamic speciation of toxic trace elements in marine waters is critically reviewed. Due to the importance of dynamic considerations in the interpretation of the electrochemical signal, the principles and recent developments of kinetic features in the interconversion of metal complex species will be presented. As dynamic electrochemical methods, only stripping techniques (anodic stripping voltammetry and stripping chronopotentiometry) will be used because they are the most important for the determination of trace elements. Competitive ligand exchange-adsorptive cathodic stripping voltammetry, which should be considered an equilibrium technique rather than a dynamic method, will be also discussed because the complexing parameters may be affected by some kinetic limitations if equilibrium before analysis is not attained and/or the flux of the adsorbed complex is influenced by the lability of the natural complexes in the water sample. For a correct data interpretation and system characterization the comparison of results obtained from different techniques seems essential in the articulation of a serious discussion of their meaning.  相似文献   

4.
Different experimental approaches have been suggested in the last few decades to determine metal species in complex matrices of unknown composition as environmental waters. The methods are mainly focused on the determination of single species or groups of species.The more recent developments in trace elements speciation are reviewed focusing on methods for labile and free metal determination.Electrochemical procedures with low detection limit as anodic stripping voltammetry (ASV) and the competing ligand exchange with adsorption cathodic stripping voltammetry (CLE-AdCSV) have been widely employed in metal distribution studies in natural waters. Other electrochemical methods such as stripping chronopotentiometry and AGNES seem to be promising to evaluate the free metal concentration at the low levels of environmental samples. Separation techniques based on ion exchange (IE) and complexing resins (CR), and micro separation methods as the Donnan membrane technique (DMT), diffusive gradients in thin-film gels (DGT) and the permeation liquid membrane (PLM), are among the non-electrochemical methods largely used in this field and reviewed in the text. Under appropriate conditions such techniques make possible the evaluation of free metal ion concentration.  相似文献   

5.
This article reviews the voltammetric methods of chromium determination, including adsorptive and catalytic adsorptive stripping voltammetry at liquid mercury, metallic films, and modified carbon paste electrodes. The principle applications of the catalytic adsorptive stripping voltammetric method of chromium(VI) determination in the presence of DTPA and nitrate, most useful in the analysis of chromium traces and its speciation, is presented in detail. Special emphasis is put on the presentation and characterization of the voltammetric procedures which make it possible to conduction speciation studies of chromium(VI) in the presence of a great excess of chromium(III) and surfactants. This survey is based on 173 articles.  相似文献   

6.
Cathodic stripping voltammetry of trace Mn(II) at carbon film electrodes   总被引:1,自引:0,他引:1  
Filipe OM  Brett CM 《Talanta》2003,61(5):643-650
A sensitive voltammetric method is presented for the determination of tract levels of Mn (II) using carbon film electrodes fabricated from carbon resistors of 2 Ω. Determination of manganese was made by square wave cathodic stripping voltammetry (CSV), with deposition of manganese as manganese dioxide. Chronoamperometric experiments were made to study MnO2 nucleation and growth. As a result, it was found to be necessary to perform electrode conditioning at a more positive potential to initiate MnO2 nucleation. Under optimised conditions the detection limit obtained was 4 nM and the relative standard deviation for eight measurements of 0.22 nM was 5.3%. Interferences from various metal ions on the response CSV of Mn(II) were investigated, namely Cd(II), Ni(II), Cu(II), Cr(VI), Pb(II), Zn(II) and Fe(II). Application to environmental samples was demonstrated.  相似文献   

7.
This short review deals with the properties and significance of the determination of selenium, which is in trace amounts an essential element for animals and humans, but toxic at high concentrations. It may cause oxidative stress in cells, which leads to the chronic disease called selenosis. Several analytical techniques have been developed for its detection, but electroanalytical methods are advantageous due to simple sample preparation, speed of analysis and high sensitivity of measurements, especially in the case of stripping voltammetry very low detection limits even in picomoles per liter can be reached. A variety of working electrodes based on mercury, carbon, silver, platinum and gold materials were applied to the analysis of selenium in various samples. Only selenium in oxidation state + IV is electroactive therefore the most of voltammetric determinations are devoted to it. However, it is possible to detect also other forms of selenium by indirect electrochemistry approach.  相似文献   

8.
《Electroanalysis》2004,16(6):458-471
A comparative evaluation of the utility of the various modes of stripping chronopotentiometry (SCP) for trace metal speciation analysis is presented in the broad context of stripping voltammetric techniques. The remarkable fundamental advantages of depletive SCP at scanned deposition potential (SSCP) are highlighted, and the rigorous underpinning theory is described. The distinctive features of SSCP include: i) an effective getting around part of the Nernstian extension of the reoxidation process, leading to ii) greater resolution than conventional stripping voltammetries; iii) a certain insensitivity to electrochemical irreversibility, especially at a microelectrode; iv) in principle, freedom from induced metal ion adsorption interferences; v) no requirement for excess ligand during stripping; and vi) ability to provide a certain measure of any chemical heterogeneity in the metal speciation that is easily distinguishable from effects of electrochemical irreversibility.  相似文献   

9.
Stripping voltammetric techniques are powerful analytical tools that are becoming widely used in various chemical analysis fields. Hence, the objective of this survey is to give a general overview on the scope of the applicability of stripping voltammetric methods in food industries. The applications discussed include recent studies on the utilization of these electroanalytical methods in determination of food contaminants (toxic metals, pesticide, fertilizers and veterinary drugs residuals), trace essential elements, food additive dyes and other organic compounds of biological significance. Tables that give method summaries referenced to the original work are provided.  相似文献   

10.
Here was demonstrated for the first time a possible application of abrasive stripping voltammetry in the direct measurement of trace metals in anoxic, sulfidic marine sediments (peloid mud) from a small and shallow (0.2–1 m) marine lagoon in Central Dalmatia, Croatia. Trace amounts of sample compounds are transferred to the graphite electrode surface and electrochemical reduction or oxidation processes are followed by the cyclic voltammetry in seawater or 0.55 M NaCl as electrolyte. After a preelectrolysis at potentials ranging from ?1.0 to ?1.5 V (vs. SCE) a well‐defined anodic stripping peak corresponding to the oxidation of metal deposits generated at deposition potentials is obtained around ?0.74 V (vs. SCE). The same samples were studied by anodic stripping voltammetry at the Hg electrode and inductively coupled plasma‐mass spectrometer (ICP‐MS). ICP‐MS showed higher concentrations of trace metals such as Al, Fe, Mo, Mn. A relatively high concentration of reduced sulfur species (RSS) (10?3 M) is determined electrochemically in porewater of the peloid mud, indicating that the magnitude of metal enrichment in the sediments is probably controlled by precipitation with sulfide.  相似文献   

11.
《Electroanalysis》2002,14(24):1707-1712
A study is presented on the characterization, evaluation and optimization of several key operational parameters for a reliable and effective use of a bismuth film electrode (BiFE) as an advanced replacement of the mercury film electrode in anodic stripping voltammetric measurements of trace heavy metals. Applying in situ preparation of the BiFE and employing lead(II) and cadmium(II) as model analyte ions, key parameters including bismuth precursor salt and substrate surface (platinum, gold, glassy carbon, carbon paste, carbon fiber) for bismuth plating, concentration as well as cationic and anionic composition of the measurement solution, solution pH and temperature, potential interferents, and stripping modes were carefully examined for their effects in the preconcentration and stripping steps. Parameters such as substrate surface (except platinum), precursor salt, solution matrix and temperature showed no or little impact on the BiFE performance in stripping analysis. On the other hand, the BiFE performance was found to be dependent on the solution pH (with maximum efficiency in the range of 4 to 5), on the stripping mode (with square‐wave voltammetry as the best choice) and to a certain degree on the presence of surface active substances. The results revealed that the non‐toxic solid‐state BiFE is applicable under a wide variety of conditions which proves it highly suitable for practical work in environmental trace heavy metal analysis.  相似文献   

12.
A new automated batch method for the determination of ultratrace metals (nanogram per liter level) was developed and validated. Instrumental and chemical parameters affecting the performance of the method were carefully assessed and optimized. A wide range of voltammetric methods under different chemical conditions were tested. Cadmium, lead and copper were determined by anodic stripping voltammetry (ASV), while nickel, cobalt, rhodium and uranium by adsorptive cathodic stripping voltammetry (AdCSV). The figures of merit of all of these methods were determined: very good precision and accuracy were achieved, e.g. relative percentage standard deviation in the 4-13% for ASV and 2-5% for AdCSV.The stripping methods were applied to the determination of cadmium, lead, copper, nickel, cobalt, rhodium and uranium in lake water samples and the results were found to be comparable with ICP-MS data.  相似文献   

13.
The antimony film electrode (SbFE) was prepared ex situ for anodic and adsorptive stripping voltammetric measurement of selected heavy metal ions. The electrode revealed good linearity for Cd(II) and Pb(II) in a nondeaerated solution of 0.01 M HCl in the examined concentration range from 25 to 80 μg L?1 with limits of detection of 1.1 μg L?1 for Cd(II) and 0.3 μg L?1 for Pb(II) and an excellent reproducibility. The preplated SbFE was also preliminary tested for measuring low levels of Ni(II) using adsorptive stripping voltammetry exhibiting good linearity and sensitivity in combination with only a 30 s deposition step.  相似文献   

14.
This work reports the simultaneous determination of Cd(II), Pb(II) and Zn(II) at the low μg l−1 concentration levels by square wave anodic stripping voltammetry (SWASV) on a bismuth-film electrode (BFE) plated in situ. The metal ions and bismuth were simultaneously deposited by reduction at −1.4 V on a rotating glassy carbon disk electrode. Then, the preconcentrated metals were oxidised by scanning the potential of the electrode from −1.4 to 0 V using a square-wave waveform. The stripping current arising from the oxidation of each metal was related to the concentration of each metal in the sample. The parameters for the simultaneous determination of the three metals were investigated with the view to apply this type of voltammetric sensor to real samples containing low concentrations of metals. Using the selected conditions, the limits of detection were 0.2 μg l−1 for Cd and for Pb and 0.7 μg l−1 for Zn at a preconcentration time of 10 min. Finally, BFE's were successfully applied to the determination of Pb and Zn in tapwater and human hair and the results were in satisfactory statistical agreement with atomic absorption spectroscopy (AAS).  相似文献   

15.
《Electroanalysis》2004,16(9):697-711
Voltammetric approaches for the determination of arsenic and speciation at trace levels are critically appraised in a review covering the literature from 1970 to 2002. Special attention is devoted to stripping modes and to issues related to the choice of working material and supporting electrolyte. A section is dedicated to the management of real samples and aspects of sample preparation. An extensive compilation, organized by real sample type, gathers essential experimental conditions. Potentiometric stripping analysis is introduced for sake of comparison. The coupling of voltammetric detection or preaccumulation with FIA, chromatography, capillary electrophoresis and ICP techniques is also addressed.  相似文献   

16.
《Electroanalysis》2005,17(7):549-555
Carbon film disk electrodes with Nafion coatings have been characterized by electrochemical impedance spectroscopy (EIS) with a view to a better understanding of their advantages and limitations in electroanalysis, particularly in anodic stripping voltammetry of metal ions. After initial examination by cyclic voltammetry, spectra were recorded over the full potential range in acetate buffer solution at the bare electrodes, electrodes electrochemically pretreated in acid solution, and Nafion‐coated pretreated electrodes in the presence and absence of dissolved oxygen. EIS equivalent circuit analysis clearly demonstrated the changes between these electrode assemblies. In order to simulate anodic stripping voltammetry conditions, spectra were also obtained in the presence of cadmium and lead ions in solution at Nafion‐coated electrodes, both after metal ion deposition and following re‐oxidation. Permanent changes to the structure of the Nafion film occurred, which has implications for use of these electrode assemblies in anodic stripping voltammetry at relatively high trace metal ion concentrations.  相似文献   

17.
Brett CM  Fungaro DA 《Talanta》2000,50(6):1223-1231
Mercury-thin film electrodes coated with a thin film of poly(ester sulphonic acid) (PESA) have been investigated for application in the analysis of trace heavy metals by square wave anodic stripping voltammetry using the batch injection analysis (BIA) technique. Different polymer dispersion concentrations in water/acetone mixed solvent are investigated and are characterised by electrochemical impedance measurements on glassy carbon and on mercury film electrodes. The influence of electrolyte anion, acetate or nitrate, on polymer film properties is demonstrated, acetate buffer being shown to be preferable for stripping voltammetry applications. Although stripping currents are between 30 and 70% less at the coated than at bare mercury thin film electrodes, the influence of model surfactants on stripping response is shown to be very small. The effect of the composition of the modifier film dispersion on calibration plots is shown; however, detection limits of around 5 nM are found for all modified electrodes tested. This coated electrode is an alternative to Nafion-coated mercury thin film electrodes for the analysis of trace metals in complex matrices, particularly useful when there is a high concentration of non-ionic detergents.  相似文献   

18.
This work addresses the simultaneous determination of copper(II) and antimony(III) in real matrices by differential pulse (DPASV) and fundamental harmonic alternating current anodic stripping voltammetry (ACASV). The voltammetric measurements were carried out using as supporting electrolyte the same acidic mixture (nitric, hydrochloric and perchloric acids) used in the dissolution of the real matrices with proper dilution. The procedure of the sample preparation is thus reduced to one step hence avoiding errors from long and complex sample handlings prior to the instrumental measurement. The results were verified by the analysis of the standard reference materials NBS-SRM 631 Spectrographic Zinc Spelter D-2 and BCS 207/2 Gunmetal. The precision, expressed as relative standard deviation, and the accuracy, expressed as relative error, were, in all cases, less than 5%; the detection limit, for each element and in the experimental conditions employed, was around 10−7 M. The standard addition technique improved the resolution of the voltammetric method, even in the case of very high metal concentration ratios.  相似文献   

19.
Anodic stripping voltammetry (ASV) and cathodic stripping voltammetry (CSV) were used to determine Mn concentration using metal catalyst free carbon nanotube (MCFCNT) electrodes and square wave stripping voltammetry (SWSV). The MCFCNTs are synthesized using a Carbo Thermal Carbide Conversion method which results in a material that does not contain residual transition metals. Detection limits of 120 nM and 93 nM were achieved for ASV and CSV, respectively, with a deposition time of 60 s. CSV was found to be better than ASV in Mn detection in many aspects, such as limit of detection and sensitivity. The CSV method was used in pond water matrix addition measurements.  相似文献   

20.
Three different electroanalytical techniques for the detection of manganese in marine sediments are evaluated. The anodic stripping voltammetry of manganese at an in situ bismuth-film-modified boron-doped diamond electrode and cathodic stripping voltammetry at a carbon paste electrode are shown to lack the required sensitivity and reproducibility whereas cathodic stripping voltammetry at a bare boron-doped diamond electrode is shown to be reliable and selective with a limit of detection, from applying a 60 s accumulation period of 7.4 × 10−7 M and a sensitivity of 0.24 A M−1. The method was used to evaluate the manganese content of marine sediments taken from Šibenik, Croatia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号