首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper I expand Eric Scerri’s notion of Popper’s naturalised approach to reduction in chemistry and investigate what its consequences might be. I will argue that Popper’s naturalised approach to reduction has a number of interesting consequences when applied to the reduction of chemistry to physics. One of them is that it prompts us to look at a ‘bootstrap’ approach to quantum chemistry, which is based on specific quantum theoretical theorems and practical considerations that turn quantum ‘theory’ into quantum ‘chemistry’ proper. This approach allows us to investigate some of the principles that drive theory formation in quantum chemistry. These ‘enabling theorems’ place certain limits on the explanatory latitude enjoyed by quantum chemists, and form a first step into establishing the relationship between chemistry and physics in more detail.  相似文献   

2.
Although various synthetic methodologies including organic synthesis, polymer chemistry, and materials science are the main contributors to the production of functional materials, the importance of regulation of nanoscale structures for better performance has become clear with recent science and technology developments. Therefore, a new research paradigm to produce functional material systems from nanoscale units has to be created as an advancement of nanoscale science. This task is assigned to an emerging concept, nanoarchitectonics, which aims to produce functional materials and functional structures from nanoscale unit components. This can be done through combining nanotechnology with the other research fields such as organic chemistry, supramolecular chemistry, materials science, and bio-related science. In this review article, the basic-level of nanoarchitectonics is first presented with atom/molecular-level structure formations and conversions from molecular units to functional materials. Then, two typical application-oriented nanoarchitectonics efforts in energy-oriented applications and bio-related applications are discussed. Finally, future directions of the molecular and materials nanoarchitectonics concepts for advancement of functional nanomaterials are briefly discussed.  相似文献   

3.
The use of molecules as electronic devices is one of the focuses in the emerging field of nanotechnology. Two issues of relevance to this topic will be discussed in this lecture. In the first part, I will discuss the interfacial electronic structure and electron transport mechanism at molecular-metal junctions. Recent results from my laboratory revealed the role of chemical anchor in electron transport and the formation of molecular quantum wells at metal/organic interfaces. In the second part, I will present a general strategy to integrate molecular components into silicon technology. The application of this chemistry beyond molecular electronics will also be discussed.  相似文献   

4.
The selective binding of a substrate by a molecular receptor to form a supramolecular species involves molecular recognition which rests on the molecular information stored in the interacting species. The functions of supermolecules cover recognition, as well as catalysis and transport. In combination with polymolecular organization, they open ways towards molecular and supramolecular devices for information processing and signal generation. The development of such devices requires the design of molecular components performing a given function (e.g., photoactive, electroactive, ionoactive, thermoactive, or chemoactive) and suitable for assembly into an organized array. Light-conversion devices and charge-separation centers have been realized with photoactive cryptates formed by receptors containing photosensitive groups. Eleclroactive and ionoactive devices are required for carrying information via electronic and ionic signals. Redox-active polyolefinic chains, like the “caroviologens”, represent molecular wires for electron transfer through membranes. Push-pull polyolefins possess marked nonlinear optical properties. Tubular mesophases, formed by organized stacking of suitable macro-cyclic components, as well as “chundle”-type structures, based on bundles of chains grafted onto a macrocyclic support, represent approaches to ion channels. Lipophilic macrocyclic units form Langmuir-Blodgett films that may display molecular recognition at the air-water interface. Supramolecular chemistry has relied on more or less preorganized molecular receptors for effecting molecular recognition, catalysis, and transport processes. A step beyond preorganization consists in the design of systems undergoing self-organization, that is, systems capable of spontaneously generating a well-defined supramolecular architecture by self-assembling from their components under a given set of conditions. Several approaches to self-assembling systems have been pursued: the formation of helical metal complexes, the double-stranded helicates, which result from the spontaneous organization of two linear polybipyridine ligands into a double helix by binding of specific metal ions; the generation of mesophases and liquid crystalline polymers of supramolecular nature from complementary components, amounting to macroscopic expression of molecular recognition; the molecular-recognition-directed formation of ordered solid-state structures. Endowing photo-, electro-, and ionoactive components with recognition elements opens perspectives towards the design of programmed molecular and supramolecular systems capable of self-assembly into organized and functional supramolecular devices. Such systems may be able to perform highly selective operations of recognition, reaction, transfer, and structure generation for signal and information processing at the molecular and supramolecular levels.  相似文献   

5.
The development of nanotechnology using organic materials is one of the most intellectually and commercially exciting stories of our times. Advances in synthetic chemistry and in methods for the investigation and manipulation of individual molecules and small ensembles of molecules have produced major advances in the field of organic nanomaterials. The new insights into the optical and electronic properties of molecules obtained by means of single-molecule spectroscopy and scanning probe microscopy have spurred chemists to conceive and make novel molecular and supramolecular designs. Methods have also been sought to exploit the properties of these materials in optoelectronic devices, and prototypes and models for new nanoscale devices have been demonstrated. This Review aims to show how the interaction between synthetic chemistry and spectroscopy has driven the field of organic nanomaterials forward towards the ultimate goal of new technology.  相似文献   

6.
基于超分子自组装的分子纳米技术是一种新兴的高新技术。本文从金属矢量操纵的自组装分子纳米体系、自组装的纳米微反应器与超分子催化和自组装金属超分子高分子纳米材料等三个方面评述了分子纳米技术及其在构筑金属有机分子纳米体系中的发展现状 ,进一步阐述了“金属矢量”的概念 ,并首次提出建立“自组装子工具箱” ,探讨了分子纳米技术的发展方向。  相似文献   

7.
Fullerene derivatives are attractive building blocks for the preparation of molecular and supramolecular photoactive devices. As a part of this research, combination of C60 with oligophenylenevinylene (OPV) subunits has generated significant research efforts. These results are summarized in the present account to illustrate the current state-of-the-art of fullerene chemistry for the development of new photoactive materials.  相似文献   

8.
Supramolecular chemistry is the chemistry of the intermolecular bond, covering the structures and functions of the entities formed by association of two or more chemical species. Molecular recognition in the supermolecules formed by receptor-substrate binding rests on the principles of molecular complementarity, as found in spherical and tetrahedral recognition, linear recognition by co-receptors, metallo-receptors, amphilic receptors and anion coordination. Supramolecular catalysis by receptors bearing reactive groups effects bond cleavage reactions as well as synthetic bond formation via co-catalysis. Lipophilic receptor molecules act as selective carriers for various substrates and allow the setting up of coupled transport processes linked to electron and proton gradients or to light. Whereas endo-receptors bind substrates in molecular cavities by convergent interactions, exo-receptors rely on interactions between the surfaces of the receptor and the substrate; thus new types of receptors such as the metallonucleates may be designed. In combination with polymolecular assemblies, receptors, carriers and catalysts may lead to molecular and supramolecular devices, defined as structurally organized and functionally integrated chemical systems built on supramolecular architectures. Their recognition, transfer and transformation features are analyzed specifically from the point of view of molecular devices that would operate via photons, electrons or ions, thus defining the fields of molecular photonics, electronics and ionics. Introduction of photosensitive groups yields photoactive receptors for the design of light conversion and charge separation centres. Redox active polyolefinic chains represent molecular wires for electron transfer through membranes. Tubular mesophases formed by stacking of suitable macrocyclic receptors may lead to ion channels. Molecular self-assembling occurs with acyclic ligands that form complexes with a double helical structure. Such developments in molecular and supramolecular design and engineering open perspectives towards the realization of molecular photonic, electronic and ionic devices, that would perform highly selective recognition, reaction and transfer operations for signal and information processing at the molecular level.  相似文献   

9.
Recent advances in supramolecular coordination chemistry allow access to transition-metal complexes of grid-type architecture comprising two-dimensional arrays of metal ions connecting a set of organic ligands in a perpendicular arrangement to generate a multiple wiring network. General design principles for these structures involve the thermodynamically driven synthesis of complex discrete objects from numerous molecular components in a single overall operation. Such supramolecular metal ion arrays combine the properties of their constituent metal ions and ligands, showing unique optical, electrochemical, and magnetic behavior. These features present potential relevance for nanotechnology, particularly in the area of supramolecular devices for information storage and processing. Thus, a dense organization of addressable units is represented by an extended "grid-of-grids" arrangement, formed by interaction of grid-type arrays with solid surfaces.  相似文献   

10.
Cyclodextrins and nanomaterials are widely used in the achievement of powerful platforms in supramolecular chemistry and nanotechnology. The relatively hydrophobic internal cavity of the CDs selectively retains molecules having the proper geometry, while the hydrophilic exterior allows CDs to improve the dispersibility and molecular recognition. The nanomaterials provide higher surface area, good conductivity, and electrocatalytic effect. The use of nanomaterials and CDs in electrochemical sensors’ design allows the development of a large variety of devices, explaining the increasing number of papers in the last years that are discussed in this review.  相似文献   

11.
Thermocells are a thermoelectric conversion technology that utilizes the shift in an electrochemical equilibrium arising from a temperature difference. This technology has a long history; however, its low conversion efficiency impedes its practical usage. Recently, an increasing number of reports have shown drastic improvements in thermoelectric conversion efficiency, and thermocells could arguably represent an alternative to solid thermoelectric devices. In this Minireview, we regard thermocells as molecular systems consisting of successive molecular processes responding to a temperature change to achieve energy generation. Various molecular technologies have been applied to thermocells in recent years, and could stimulate diverse research fields, including supramolecular chemistry, physical chemistry, electrochemistry, and solid-state ionics. These research approaches will also provide novel methods for achieving a sustainable society in the future.  相似文献   

12.
Nature's use of a simple genetic code to enable life's complex functions is an inspiration for supramolecular chemistry. DNA nucleobases carry the key information utilizing a variety of cooperative and non-covalent interactions such as hydrophobic, van der Waals, pi-pi stacking, ion-dipole and hydrogen bonding. This tutorial review describes some recent advances in the form and function provided by self-assembly of guanine (G) based systems. We attempt to make connections between the structures of the assemblies and their properties. The review begins with a brief historical context of G self-assembly in water and then describes studies on lipophilic guanosine analogs in organic solvents. The article also focuses on examples of how G analogs have been used as building blocks for functional applications in supramolecular chemistry, material science and nanotechnology.  相似文献   

13.
The macroscopic concepts of a device and a machine can be extended to the molecular level. Molecular-level devices and machines are constructed by a bottom-up approach. The atom-by-atom bottom-up approach is unrealistic from the chemical viewpoint. The bottom-up approach molecule-by-molecule following the guidelines of supramolecular (multicomponent) chemistry has proved to be successful. The extension of the concepts of a device and a machine to the molecular level is of interest not only for basic research, but also for the growth of nanoscience and the development of nanotechnology.  相似文献   

14.
This review highlights how the combination of supramolecular principles and nanoscopic solid structures enables the design of new hybrid sensing ensembles with improved sensitivity and/or selectivity and for the targeting of analytes for which selectivity is hard to achieve by conventional methods. Such ideas are bridging the gap between molecules, materials sciences and nanotechnology. Relevant examples will be detailed, taking into account functional aspects such as (1) enhanced coordination of functionalized solids, (2) enhanced signalling through preorganization, (3) signalling by assembly–disassembly of nanoscopic objects, (4) biomimetic probes utilizing discrimination by polarity and size and (5) distinct switching and gating protocols. These strategies are opening new prospects for sensor research and signalling paradigms at the frontier between nanotechnology, smart materials and supramolecular chemistry.  相似文献   

15.
Supramolecular chemistry is the chemistry of the intermolecular bond, covering the structures and functions of the entities formed by association of two or more chemical species. Molecular recognition in the supermolecules formed by receptor-substrate binding rests on the principles of molecular complementarity, as found in spherical and tetrahedral recognition, linear recognition by coreceptors, metalloreceptors, amphiphilic receptors, and anion coordination. Supramolecular catalysis by receptors bearing reactive groups effects bond cleavage reactions as well as synthetic bond formation via cocatalysis. Lipophilic receptor molecules act as selective carriers for various substrates and make it possible to set up coupled transport processes linked to electron and proton gradients or to light. Whereas endoreceptors bind substrates in molecular cavities by convergent interactions, exoreceptors rely on interactions between the surfaces of the receptor and the substrate; thus new types of receptors, such as the metallonucleates, may be designed. In combination with polymolecular assemblies, receptors, carriers, and catalysts may lead to molecular and supramolecular devices, defined as structurally organized and functionally integrated chemical systems built on supramolecular architectures. Their recognition, transfer, and transformation features are analyzed specifically from the point of view of molecular devices that would operate via photons, electrons, or ions, thus defining fields of molecular photonics, electronics, and ionics. Introduction of photosensitive groups yields photoactive receptors for the design of light-conversion and charge-separation centers. Redox-active polyolefinic chains represent molecular wires for electron transfer through membranes. Tubular mesophases formed by stacking of suitable macrocyclic receptors may lead to ion channels. Molecular self-assembling occurs with acyclic ligands that form complexes of double-helical structure. Such developments in molecular and supramolecular design and engineering open perspectives towards the realization of molecular photonic, electronic, and ionic devices that would perform highly selective recognition, reaction, and transfer operations for signal and information processing at the molecular level.  相似文献   

16.
《Chemphyschem》2003,4(1):49-59
Miniaturization has been an essential ingredient in the outstanding progress of information technology over the past fifty years. The next, perhaps ultimate, limit of miniaturization is that of molecules, which are the smallest entities with definite size, shape, and properties. Recently, great effort has been devoted to design and investigate molecular‐level systems that are capable of transferring, processing, and storing information in binary form. Some of these nanoscale devices can, in fact, perform logic operations of remarkable complexity. This research—although far from being transferred into technology—is attracting interest, as the nanometer realm seems to be out of reach for the “top‐down” techniques currently available to microelectronics industry. Moreover, such studies introduce new concepts in the “old” field of chemistry and stimulate the ingenuity of researchers engaged in the “bottom‐up” approach to nanotechnology.  相似文献   

17.
Thought experiments in the history of science display a striking asymmetry between chemistry and physics, namely that chemistry seems to lack well-known examples, whereas physics presents many famous examples. This asymmetry, I argue, is not independent data concerning the chemistry/physics distinction. The laws of chemistry such as the periodic table are incurably special, in that they make testable predictions only for a very restricted range of physical conditions in the universe which are necessarily conditioned by the contingences of chemical investigation. The argument depends on how ‚thought experiment’ is construed. Here, several recent accounts of thought experiments are surveyed to help formulate what I call ‚crucial’ thought experiments. These have a historical role in helping to judge between hypotheses in physics, but are not helpful in chemistry past or present.  相似文献   

18.
A novel supramolecular fluorescence switch system consisted of a perfect host/electron-acceptor mono-6-p-nitrobenzoyl-β-cyclodextrin (p-NBCD) and an ideal guest/electron-donor (adamantane-C4-porphyrin) was reported. The ‘ON’ and ‘OFF’ states of fluorescence switch were droved by solvent polarity.  相似文献   

19.
As a youngster of perhaps 8 years, Charles S. Peirce was given a chemistry laboratory in which he probably did experiments in qualitative analysis. These experiments were modeled on the hypothetico-deductive method of inquiry. I argue that this laboratory experience initiated Peirce’s life-long interest in logic and the logic of science, and flowered in his “pragmaticism.” This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The supramolecular chemistry of organic-inorganic hybrid materials   总被引:1,自引:0,他引:1  
The combination of nanomaterials as solid supports and supramolecular concepts has led to the development of hybrid materials with improved functionalities. These "hetero-supramolecular" ideas provide a means of bridging the gap between molecular chemistry, materials sciences, and nanotechnology. In recent years, relevant examples have been reported on functional aspects, such as enhanced recognition and sensing by using molecules on preorganized surfaces, the reversible building of nanometer-sized networks and 3D architectures, as well as biomimetic and gated chemistry in hybrid nanomaterials for the development of advanced functional protocols in three-dimensional frameworks. This approach allows the fine-tuning of the properties of nanomaterials and offers new perspectives for the application of supramolecular concepts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号