首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The dynamics and heat transfer in a porous medium occupied by a liquid with parameters in the neighborhood of the critical point of “liquid-gas” transition are simulated numerically within the framework of the equations of dynamics of a porous medium with a compressible liquid phase and the Van-der-Waals equation of state. Adiabatic heating of the liquid phase in a porous layer initiated by a jump in temperature on one of the boundaries is investigated under microgravity conditions. Thermo-gravitational convection in the unsteady and steady-state regimes is simulated in rectangular domains and the effect of adiabatic heating on convection is studied. Calibration relations between the Rayleigh-Darcy and Prandtl numbers in the basic system of equations and their real analogs are obtained. A comparison is made with convection in a porous media occupied by a perfect gas.  相似文献   

2.
The characteristics of heat transfer during natural thermogravitational fluid convection of low intensity in a rectangular cavity heated from below (cooled from above) are investigated. Local convection effects are studied. The dependence of local superheating (supercooling) on the Grashof number and the cavity side ratio is found for single-, two-and three-vortex steady motions. The limits of the convection regimes are estimated.  相似文献   

3.
Supercritical binary-mixture flows in connected channels of finite depth are studied theoretically and experimentally. It is shown that, in contrast to uniform fluids, in the mixture the convection excitation is “hard” and specific transient flows and oscillation regimes are observed. A mechanism explaining the phenomena observed is proposed and confirmed by a theoretical solution of the problem. The amplitude curves and the channel distributions of the velocity, temperature, and admixture concentration are obtained. These illustrate the competition between the thermodiffusion and thermo-gravitational convection mechanisms.  相似文献   

4.
The concentration profile is investigated for a solution that saturates a low-permeability soil. The simulation results showed the presence of three flow regimes. The salt accumulated near the phase transition boundary increases the solution density and may lead to the development of natural concentration-induced convection which interacts with the rising flow (forced convection). The stability threshold of the forced flow and the effect on it of natural convection that arises are determined. It is shown that at intense flow to the evaporation surface the admixture concentration increases at this boundary rapidly and reaches the saturation concentration. In this case, the admixture precipitates. In the slow evaporation regime the admixture diffuses from the high-concentration region, which prevents the development of convective flow.  相似文献   

5.
The effect of internal heat sources on the flow pattern in the filtration convection problem with cosymmetry is studied numerically. Low-intensity heat sources, whose presence leads to violation of cosymmetry and breakdown of the one-parameter family of steady regimes are considered. Theoretically predicted scenarios for the breakdown of the family into a finite number of steady regimes and the occurrence of slow periodic motions are confirmed. The existence of relaxation oscillations is established for large Rayleigh numbers.  相似文献   

6.
Saravanan  S.  Kandaswamy  P. 《Meccanica》2002,37(6):599-608
Two-dimensional laminar convection in low Prandtl number liquids driven by the buoyancy force is studied. The liquid is contained in a closed square cavity with isothermal vertical walls kept at different temperatures. The top and bottom walls are assumed to be insulated. The thermal conductivity of the liquid is assumed to depend on temperature. ADI and SOR schemes are employed. The heat transfer is found to decrease appreciably across the cavity with a decrease in thermal conductivity.  相似文献   

7.
Fluid flow and heat transfer of mixed convection from a constant wall temperature circular cylinder in zero-mean velocity oscillating cooling flows have been simulated based on the projection method with two dimensional exponential stretched staggered cylindrical meshes. Cycle mean temperature and secondary streaming are obtained by the method of partial sums of the Fourier series. Present numerical results are validated by comparing the heat transfer results of free convection and the secondary streaming of pure oscillating flow over a circular cylinder to published experimental and numerical results. The complete structures of the cycle mean temperature and secondary streaming patterns are provided by numerical simulations over wide ranges of the Reynolds number, the Keulegan–Carpenter number and the Richardson number. Based on turning points of the curves of the overall Nusselt numbers versus Reynolds numbers and the characteristics of the cycle averaged temperature and flow patterns, the heat transfer can be divided into three linear regimes (conduction, laminar convection, and turbulent convection dominated regimes) and two non-linear transition regimes. The effects of wave directions, amplitudes, frequencies, and buoyancy forces on the enhancement of heat transfer are also investigated. The effective ranges of the governing parameters for heat transfer enhancement are identified.  相似文献   

8.
The problem of natural convection in an inclined rectangular porous layer enclosure is studied numerically. The enclosure is heated from one side and cooled from the other by a constant heat flux while the two other walls are insulated. The effect of aspect ratio, inclination angle and Rayleigh number on heat transfer is studied. It is found that the enclosure orientation has a considerable effect on the heat transfer. The negative orientation sharply inhibits the convection and consequently the heat transfer and a positive orientation maximizes the energy transfer. The maximum temperature within the porous medium can be considerably higher than that induced by pure conduction when the cavity is negatively oriented. The peak of the average Nusselt number depends on the Rayleigh number and the aspect ratio. The heat transfer between the two thermally active boundaries is sensitive to the effect of aspect ratio. For an enclosure at high or low aspect ratio, the convection is considerably decreased and the heat transfer depends mainly on conduction.  相似文献   

9.
A finite-volume-based numerical model for mixed-convection laminar film condensation from a flowing mixture of a vapor and a heavier noncondensable gas on inclined isothermal flat plates is presented. The full boundary layer equations for the liquid film and the vapor-gas mixtures (including liquid inertia and energy convection terms) are solved implicitly with appropriate liquid-mixture interface conditions. Results were obtained for three mixtures, covering wide ranges of liquid Prandtl number and free-stream gas concentration in the forced-convection, mixed-convection and free-convection flow regimes. The effects of liquid inertia were found to be significant only for low-Prandtl-number fluids and lower gas concentrations. The effects of liquid energy convection were found to be significant only for high-Prandtl-number fluids and to be most significant for mixed-convection condensation. Received on 3 March 1998  相似文献   

10.
The effect of density inversion on transient natural convection heat transfer of cold water in a square cavity with partially active vertical walls is studied numerically. The governing equations are solved by control volume method with power law scheme. In the hot location the temperature is varied sinusoidally and in the cold location uniform temperature is maintained. Nine different positions of the active zones are considered. Results are discussed for various values of the amplitude, period and different Grashof numbers and presented graphically in the form of isotherms, streamlines, mid-height velocity profile and average Nusselt number. It is found that density inversion of water affects natural convection flow and heat transfer. Heat transfer rate is enhanced upto 80% when the heating location is in the middle of the hot wall.  相似文献   

11.
Thermal vibrational convection in a saturated porous medium is theoretically studied on the basis of a thermal nonequilibrium model, in accordance with which the temperatures of the porous medium and the saturating liquid can be different. In the high-frequency vibration approximation the averaged equations of convection are derived. The dependence of the vibration force direction on the interphase heat transfer coefficient and the vibration frequency is established. Vibrational convection in a cylindrical layer is studied. It is shown that, depending on the interphase heat transfer coefficient, the flows of two types differing in the liquid circulation direction can exist.  相似文献   

12.
The problem of the development of convection in a binary mixture in the neighborhood of an infinite vertical plate, on which a constant (after initial switch-on) heat flux and zero admixture flow are given, is solved. In particular, the cases of neutral and stable density stratification of the medium are considered. It is found that heat transfer to the medium can lead not to an increase but to a decrease in its temperature. This can be interpreted as the effective negative heat capacity of the stratified binary mixture.  相似文献   

13.
《Fluid Dynamics Research》1993,11(1-2):79-83
The fluid dynamic phenomena of a high speed liquid jet impact on a deep water surface have been studied using Imacon high-speed photography. Both framing and streak techniques are applied to investigate the initial impact stage and penetration velocity. The cavitation caused by air entrapment between two colliding liquid surfaces has been found. The bubble collapse experiences different stages in relation to the contact area, liquid shock wave, release wave and fluid convection.  相似文献   

14.
The branching off of steady-state regimes from mechanical equilibrium is studied for the problem of filtration convection in a parallelepiped. The conditions for the geometric parameters under which stable continuous families of steady-state regimes develop are found. The stability of equilibria of the family with respect to three-dimensional perturbations is analyzed in a numerical experiment using a finite-difference method.  相似文献   

15.
16.
An analytical study is made for wall effects in non-Darcy mixed convection from vertical impermeable surfaces embedded in a saturated porous medium. The governing equations are transformed into a dimensionless form by non-similar transformation to cover both forced and natural convection dominated regimes. Two different dimensionless parameters that measure the strength of mixed convection were found in both regimes. The parameters of forced convection dominated regime can be related to those of natural convection dominated regime. An approximate analytical solution for the governing equations was obtained. Temperature and velocity profiles for both regimes are presented. Received on 9 September 1997  相似文献   

17.
Layered Thermohaline Convection in Hypersaline Geothermal Systems   总被引:3,自引:0,他引:3  
Thermohaline convection occurs in hypersaline geothermal systems due to thermal and salinity effects on liquid density. Because of its importance in oceanography, thermohaline convection in viscous liquids has received more attention than thermohaline convection in porous media. The fingered and layered convection patterns observed in viscous liquid thermohaline convection have been hypothesized to occur also in porous media. However, the extension of convective dynamics from viscous liquid systems to porous media systems is complicated by the presence of the solid matrix in porous media. The solid grains cause thermal retardation, hydrodynamic dispersion, and permeability effects. We present simulations of thermohaline convection in model systems based on the Salton Sea Geothermal System, California, that serve to point out the general dynamics of porous media thermohaline convection in the diffusive regime, and the effects of porosity and permeability, in particular. We use the TOUGH2 simulator with residual formulation and fully coupled solution technique for solving the strongly coupled equations governing thermohaline convection in porous media. We incorporate a model for brine density that takes into account the effects of NaCl and CaCl2. Simulations show that in forced convection, the increased pore velocity and thermal retardation in low-porosity regions enhances brine transport relative to heat transport. In thermohaline convection, the heat and brine transport are strongly coupled and enhanced transport of brine over heat cannot occur because buoyancy caused by heat and brine together drive the flow. Random permeability heterogeneity has a limited effect if the scale of flow is much larger than the scale of permeability heterogeneity. For the system studied here, layered thermohaline convection persists for more than one million years for a variety of initial conditions. Our simulations suggest that layered thermohaline convection is possible in hypersaline geothermal systems provided the vertical permeability is smaller than the horizontal permeability, as is likely in sedimentary basins such as the Salton Trough. Layered thermohaline convection can explain many of the observations made at the Salton Sea Geothermal System over the years.  相似文献   

18.
Two- and three-dimensional convection flows in a horizontal layer of a low Prandtl number fluid heated from below and rotating about a vertical axis are studied numerically with a Galerkin method. Solutions for subcritical steady finite amplitude convection and convection in the form of standing oscillations are obtained. Parameter regimes that appear to be attainable in laboratory experiments have been emphasized. The stability of subcritical two-dimensional steady convection has been investigated and three-dimensional chaotic states of convection have been found.  相似文献   

19.
The paper investigates buoyancy impact on the vertical flow over a backward-facing step at low Prandtl number by Direct Numerical Simulation. In particular, the very low Prandtl number of liquid sodium, 0.0088, is considered in the regime of mixed convection, i.e. for Richardson numbers below unity. The effects of buoyancy on mean flow, heat transfer and turbulence are assessed. Buoyancy is found to attenuate recirculation and, consequently, increase heat transfer. Turbulence is decreased in the attached boundary layer for moderate buoyancy impact but surpasses the levels found in forced convection at the largest Richardson number investigated. Beyond the mean flow and second moments, the budgets of turbulent kinetic energy, Reynolds shear stress, temperature variance, and turbulent heat flux components are studied and related to the alterations in the mean field quantities. Due to scale separation, production and dissipation nearly balance for temperature variance while this is not the case for turbulent kinetic energy. Similar findings for the turbulent heat fluxes show that the correlation between temperature and pressure gradient is the most important contribution to the budget aside from production and dissipation. In addition to the physical insight into this flow, the data presented may be used for the validation and improvement of turbulence models for liquid metal flows.  相似文献   

20.
This article presents the direct numerical simulation (DNS) of mixed convection turbulent heat transfer in a horizontal channel case for liquid lead. Cartesian mesh is used and the incompressible Navier-Stokes equations are discretized with highly accurate finite difference sixth-order compact schemes to perform the DNS. The influence of mixed convection in liquid metal with Prandtl number equal to 0.025 and Reynolds number equal to 4667 has been studied by varying the Richardson number (Ri = 0, 0.25, 0.50, 1.00). The obtained results are extensively analyzed and discussed in this article. In particular, large-scale circulation is observed under the influence of buoyancy. Compared to the forced convection case (Ri = 0), stronger velocity fluctuations are noticed that highlight the fact that turbulence is strongly enhanced with the increasing buoyancy. It also proves that the thermal plumes rising up from the hot wall of the channel activate the cross-stream eddies. Moreover, temperature fluctuations are found to be more homogeneously distributed with increasing buoyancy effects and mixing is more effective in the center of the channel. In addition, compared with forced convection, mixed convection has shown enlargement of the large-scale structures that only appear in the temperature field for low Prandtl number fluids. Extensive results of flow and temperature fields are analyzed and presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号