首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Blends of poly(trimethylene terephthalate)/bisphenol A polycarbonate (PTT/PC) with different compositions were prepared by melt blending. The effect of transesterification on the miscibility and phase behavior of the blends was studied using DSC, DMA, and 1H NMR. The DMA results revealed a two-phase system with partial miscibility. DSC thermograms of the first heating scan showed a crystallizable system in which addition of PC-phase reduces the degree of crystallinity. However, the cooling and also the second heating scans revealed the complete miscibility of all the blends. It was concluded that annealing at 300 °C (to remove thermal history of the blends) caused the constituents to undergo the transesterification reaction, which changes the blend to a miscible system. The miscibility is due to formation of block copolymers with different block lengths which also suppress the crystallization of the system. The degree of randomness and sequence lengths of the copolymers were determined to analyze the extent of transesterification reaction and structure of the system. It was observed that as the reaction progresses, the degree of randomness increases and the sequence length of the copolymers decreases. Moreover, both increase of reaction time and temperature increased the extent of reaction. The results of DSC and 1H NMR showed that a small amount of reaction is needed to change this system to a miscible blend.  相似文献   

2.
The glass-transition temperature and non-isothermal crystallization of poly(trimethylene terephthalate)/poly(ethylene 2,6-naphthalate) (PTT/PEN) blends were investigated by using differential scanning calorimeter (DSC). The results suggested that the binary blends showed different crystallization and melting behaviors due to their different component of PTT and PEN. All of the samples exhibited a single glass-transition temperature, indicating that the component PTT and PEN were miscible in amorphous phase. The value of Tg predicted well by Gordon-Taylor equation decreased gradually with increasing of PTT content. The commonly used Avrami equation modified by Jeziorny, Ozawa theory and the method developed by Mo were used, respectively, to fit the primary stage of non-isothermal crystallization. The kinetic parameters suggested that the PTT content improved the crystallization of PEN in the binary blend. The crystallization growth dimension, crystallization rate and the degree of crystallinity of the blends were increased with the increasing content of PTT. The effective activation energy calculated by the advanced iso-conversional method developed by Vyazovkin also concluded that the value of Ea depended not only on the system but also on temperature, that is, the binary blend with more PTT component had higher crystallization ability and the crystallization ability is increased with increasing temperature. The kinetic parameters U* and Kg were also determined, respectively, by the Hoffman-Lauritzen theory.  相似文献   

3.
PET/PEN共混物的相容性与酯交换反应   总被引:3,自引:0,他引:3  
通过用1H-NMR对聚对苯二甲酸乙二酯(PET)与聚2,6-萘甲酸乙二酯(PEN)、PET/PEN共聚物的共混物酯交换反应的研究,测得了反应速率常数、反应活化能和诱导期.根据酯交换反应程度和不同反应温度下的诱导期探讨了酯交换反应与相容性的关系,认为PET与PEN的相容导致或增强了酯交换反应,即相容性是酯交换的必要条件;同时酯交换的发生又促进了PET与PEN的相容.酯交换和相容是聚酯共混物熔融时相互关联的两个过程.  相似文献   

4.
In the present study the miscibility behaviour and the biodegradability of poly(ε-caprolactone)/poly(propylene succinate) (PCL/PPSu) blends were investigated. Both of these aliphatic polyesters were laboratory synthesized. For the polymer characterization DSC, 1H NMR, WAXD and molecular weight measurements were performed. Blends of the polymers with compositions 90/10, 80/20, 70/30 and 60/40 w/w were prepared by solution-casting. DSC analysis of the prepared blends indicated only a very limited miscibility in the melt phase since the polymer-polymer interaction parameter χ12 was −0.11. In the case of crystallized specimens two distinct phases existed in all studied compositions as it was found by SEM micrographs and the particle size distribution of PPSu dispersed phase increased with increasing PPSu content. Enzymatic hydrolysis for several days of the prepared blends was performed using Rhizopus delemar lipase at pH 7.2 and 30 °C. SEM micrographs of thin film surfaces revealed that hydrolysis affected mainly the PPSu polymer as well as the amorphous phase of PCL. For all polymer blends an increase of the melting temperatures and the heat of fusions was recorded after the hydrolysis. The biodegradation rates as expressed in terms of weight loss were faster for the blends with higher PPSu content. Finally, a simple theoretical kinetic model was developed to describe the enzymatic hydrolysis of the blends and the Michaelis-Menten parameters were estimated.  相似文献   

5.
PPEKK/PEI共混物的相容性及拉伸性能   总被引:3,自引:0,他引:3  
作为相容体系 ,聚芳醚酮与聚醚酰亚胺 (PEI)共混物体系的研究受到了研究者的重视[1~ 4] .由于现在已商品化的聚芳醚酮基本上都是半结晶型聚合物 ,所以有有关无定型聚芳醚酮与聚醚酰亚胺共混物的研究鲜见报道 .含二氮杂萘酮结构聚芳醚酮酮 (PPEKK)是一种新型耐高温聚合物 ,相比于已经商品化的各种聚芳醚酮 ,PPEKK除具有优异的综合性能外 ,它最大的特点表现在以下两方面 ,PPEKK耐热性突出 ,玻璃化转变温度 (Tg)为 2 4 5℃左右 ,远高于各种商品化的聚芳醚酮 ;PPEKK为无定型聚合物 ,易溶于多种有机极性溶剂 ,大大的扩…  相似文献   

6.
Poly(trimethylene terephthalate) (PTT)/poly(ethylene naphthalate) (PEN) blends were miscible in the amorphous state in all of the blend compositions studied, as evidenced by a single, composition-dependent glass transition temperature (Tg) observed for each blend composition. The variation in the Tg value with the blend composition was well predicted by the Gordon-Taylor equation, with the fitting parameter being 0.57. The cold-crystallization peak temperature decreased with increasing PTT content, while the melt-crystallization peak temperature decreased with increasing amount of the minor component. The subsequent melting behavior after both cold- and melt-crystallization exhibited melting point depression, in which the observed melting temperatures decreased with increasing amount of the minor component. During melt-crystallization, both components in the blends crystallized concurrently just to form their own crystals. The blend with 60% w/w of PTT exhibited the lowest total apparent degree of crystallinity.  相似文献   

7.
The spherulite morphology and crystallization behavior of poly(ethylene terephthalate) (PET)/poly(trimethylene terephthalate) (PTT) blends were investigated with optical microscopy (OM), small-angle light scattering (SALS), and small-angle X-ray scattering (SAXS). The thermal analysis showed that PET and PTT were miscible in the melt over the entire composition range. The rejected distance of non-crystallizable species, which was represented in terms of the parameter δ, played an important role in determining the morphological patterns of the blends at a specific crystallization temperature regime. The parameter δ could be controlled by variation of the composition, the crystallization temperature, and the level of transesterification. In the case of two-step crystallization, the crystallization of PTT commenced in the interspherulitic region between the grown PET crystals and proceeded until the interspherulitic space was filled with PTT crystals. The spherulitic surface of the PET crystals acted as nucleation sites where PTT preferentially crystallized, leading to the formation of non-spherulitic crystalline texture. The SALS results suggested that the growth pattern of the PET crystals was significantly changed by the presence of the PTT molecules. The lamellar morphology parameters were evaluated by a one-dimensional correlation function analysis. The blends that crystallized above the melting point of PTT showed a larger amorphous layer thickness than the pure PET, indicating that the non-crystallizable PTT component might be incorporated into the interlamellar region of the PET crystals. With an increased level of transesterification, the exclusion of non-crystallizable species from the lamellar stacks was favorable due to the lower crystal growth rates. As a result, the amorphous layer thickness of the PET crystals decreased as the annealing time in the melt state was increased.  相似文献   

8.
This work examined the miscibility, crystallization kinetics, and melting behavior of melt‐mixed poly(trimethylene terephthalate) (PTT)/poly(ethylene‐co‐cyclohexane 1,4‐dimethanol terephthalate) (PETG) blends. Differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction techniques were used to approach the goals. The single composition‐dependent glass‐transition temperatures of the blends and the equilibrium melting temperature (T) depression of PTT in the blends indicated the miscible characteristic of the blend system at all compositions. T of pure PTT, determined with a conventional extrapolative method, was 525.8 K. Furthermore, the Flory–Huggins interaction parameter was estimated to be ?0.38. The dynamic and isothermal crystallization abilities of PTT were hindered by the incorporation of PETG. A complex melting behavior was observed for pure PTT and its blends. The observed complex melting behavior resulted mainly from the recrystallization and/or reorganization of the originally formed crystals during the heating scans. For the samples crystallized under the same conditions, the degree of recrystallization and/or reorganization declined with increasing PETG contents in the blends. The preliminary results obtained from the DSC experiments suggested that untraceable interchange reactions occurred in the studied blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2264–2274, 2003  相似文献   

9.
Poly(trimethylene terephthalate)/acrylonitrile-butadiene-styrene (PTT/ABS) blends were prepared by melt processing with and without epoxy or styrene-butadiene-maleic anhydride copolymer (SBM) as a reactive compatibilizer. The miscibility and compatibilization of the PTT/ABS blends were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), capillary rheometer and scanning electron microscopy (SEM). The existence of two separate composition-dependent glass transition temperatures (Tgs) indicates that PTT is partially miscible with ABS over the entire composition range. In the presence of the compatibilizer, both the cold crystallization and glass transition temperatures of the PTT phase shifted to higher temperatures, indicating their compatibilization effects on the blends.The PTT/ABS blends exhibited typical pseudoplastic flow behavior. The rheological behavior of the epoxy compatibilized PTT/ABS blends showed an epoxy content-dependence. In contrast, when the SBM content was increased from 1 wt% to 5 wt%, the shear viscosities of the PTT/ABS blends increased and exhibited much clearer shear thinning behavior at higher shear rates. The SEM micrographs of the epoxy or SBM compatibilized PTT/ABS blends showed a finer morphology and better adhesion between the phases.  相似文献   

10.
Thermal analysis and Fourier transform infrared spectroscopy characterizations were performed on three ternary blend systems that comprise poly(4‐vinyl phenol) (PVPh) and any two of the three homologous aryl polyesters [poly(ethylene terephthalate) (PET), poly(trimethylene terephthalate) (PTT), and poly(butylene terephthalate) (PBT)]. Although PVPh is miscible with any one of the polyesters in forming a binary blend system, miscibility in ternary systems by introducing one more polymer of different structures to the blend system is not always expected. However, this study concludes that miscibility does exist in all these three ternary blends of all compositions investigated. Reasons and factors for such behavior were probed. Quantitative interactions in the ternary blend system were also estimated. The overall interaction energy density (B) by analysis of melting point depression for the PBT/PVPh/PET ternary blend system led to a negative value (B = −5.74 cal/cm3). Similarly, Tg‐composition analyses were performed on two other ternary blend systems, PET/PVPh/PTT and PTT/PVPh/PBT. Comparison of the qualitative results showed that the interaction energy densities in the other two ternary blend systems are similarly negative and comparable to the PBT/PVPh/PET ternary blend system. The Fourier transform infrared spectroscopy results also support the qualitative findings among these three ternary blend systems. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1339–1350, 2006  相似文献   

11.
The melting, crystallization, and self-packed ring patterns in the spherulites of miscible blends comprising poly(trimethylene terephthalate) (PTT) and poly(ether imide) (PEI) were revealed by optical, scanning electron microscopies (PLM and SEM) and differential scanning calorimetry (DSC). Morphology and melting behavior of the miscible PTT/PEI blends were compared with the neat PTT. Ringed spherulites appeared in the miscible PTT/PEI blends at all crystallization temperatures up to 220 °C, whereas at this high temperature no rings were seen in the neat PTT. A postulation was proposed, and interrelations between rings in spherulites and the multiple lamellae distributions were investigated. The specific interactions and the segregation of amorphous PEI were discussed for interpreting the morphological changes of 220 °C-melt-crystallized PTT/PEI samples. Interlamellar segregation of PEI might be associated with multiple lamellae in the spherulites of PTT/PEI blends; therefore, rings were more easily formed in the PTT/PEI blends at all crystallization temperatures. A postulated model of uneven lamellar growth, coupled with periodical spiraling, more properly describes the possible origin of ring bands from combined effects of both interactions and segregation between the amorphous PEI and PTT in blends.  相似文献   

12.
The melt-crystallization and isothermal melt-crystallization kinetics of poly(ethylene terephthalate)/poly(trimethylene terephthalate) blends (PET/PTT) were investigated by differential scanning calorimetry (DSC) and polarized optical microscopy. Although PET and PTT in the binary blends are miscible at amorphous state, they will crystallize individually when cooled from the melt. In the DSC measurements, PET component with higher supercooling degree will crystallize first, and then the crystallite of PET will be the nucleating agent for PTT, which induce the crystallization of PTT at higher temperature. On the other hand, in both blends of PET80/PTT20 and PET60/PTT40, the PET component will crystallize at higher temperature with faster crystallization rate due to the dilute effect of PTT. So the commingled minor addition of one component to another helps to improve the crystallization of the blends. For blends of PET20/PTT80 and PET40/PTT60, isothermal crystallization kinetics evaluated in terms of the Avrami equation suggest different crystallization mechanisms occurred. The more PET content in blends, the fast crystallization rate is. The Avrami exponent, n = 3, suggests a three-dimensional growth of the crystals in both blends, which is further demonstrated by the spherulites formed in all blends. The crystalline blends show multiple-melting peaks during heating process.  相似文献   

13.
In this study, we successfully report an intimate ternary blend system of polycarbonate (PC)/poly(methyl methacrylate) (PMMA)/poly(vinyl acetate) (PVAc) obtained by the simultaneous coalescence of the three guest polymers from their common γ‐cyclodextrin (γ‐CD) inclusion compound (IC). The thermal transitions and the homogeneity of the coalesced ternary blend were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The observation of a single, common glass transition strongly suggests the presence of a homogeneous amorphous phase in the coalesced ternary polymer blend. This was further substantiated by solid‐state 13C NMR observation of the T(1H)s for each of the blend components. For comparison, ternary blends of PC/PMMA/PVAc were also prepared by traditional coprecipitation and solution casting methods. TGA data showed a thermal stability for the coalesced ternary blend that was improved over the coprecipitated blend, which was phase‐segregated. The presence of possible interactions between the three polymer components was investigated by infrared spectroscopy (FTIR). The analysis indicates that the ternary blend of these polymers achieved by coalescence from their common γ‐CD–IC results in a homogeneous polymer blend, possibly with improved properties, whereas coprecipitation and solution cast methods produced phase separated polymer blends. It was also found that control of the component polymer molar ratios plays a key role in the miscibility of their coalesced ternary blends. Coalescence of two or more normally immiscible polymers from their common CD–ICs appears to be a general method for obtaining well‐mixed, intimate blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4182–4194, 2004  相似文献   

14.
We prepared blends of poly(butylene‐2,6‐naphthalate) (PBN) and poly(ether imide) (PEI) by solution‐casting from dichloroacetic acid solutions. The miscibility, crystallization, and melting behavior of the blends were investigated with differential scanning calorimetry (DSC) and dynamic mechanical analysis. PBN was miscible with PEI over the entire range of compositions, as shown by the existence of single composition‐dependent glass‐transition temperatures. In addition, a negative polymer–polymer interaction parameter was calculated, with the Nishi–Wang equation, based on the melting depression of PBN. In nonisothermal crystallization investigations, the depression of the crystallization temperature of PBN depended on the composition of the blend and the cooling rate; the presence of PEI reduced the number of PBN segments migrating to the crystallite/melt interface. Melting, recrystallization, and remelting processes occurring during the DSC heating scan caused the occurrence of multiple melting endotherms for PBN. We explored the effects of various experimental conditions on the melting behavior of PBN/PEI blends. The extent of recrystallization of the PBN component during DSC heating scans decreased as the PEI content, the heating rate, the crystallization temperature, and the crystallization time increased. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1694–1704, 2004  相似文献   

15.
The effect of annealing on the miscibility and thermal properties of poly trimethylene terephthalate (PTT)/bisphenol-A polycarbonate (PC) blends was examined using pressure-volume-temperature (PVT) measurements. The PTT/PC blends were thermally annealed at 260 °C for different times to induce various extents of transesterification reactions between the two polymers. The non-annealed blends are immiscible and exhibit the thermal properties of the blend components. Upon annealing, the original semi-crystalline morphology transforms to an increasingly amorphous nature. PVT and WAXS analysis confirmed that the PTT/PC blends completely lost their crystallinity when annealed at 260 °C for a period of 120 min or longer, indicating the formation of random co-polyesters due to chemical transreactions between the PTT and PC. The further increase in the specific volume with annealing time also indicates that after reaching a completely amorphous co-polymer the transesterification continuous until a fully random copolymer is formed.  相似文献   

16.
The miscibility of poly(propylene succinate)/poly(propylene adipate) blends was investigated by means of DSC, WAXS and NMR techniques. Poly(propylene succinate) and poly(propylene adipate) were found to be completely immiscible in as blended-state. The miscibility changes upon extended mixing at elevated temperature: for enough long mixing time, the original two phases gradually merged into a single one because of transesterification reactions. The NMR analysis showed that the transesterifications led to block copolymers whose average sequence length decreased as the mixing time is increased at a fixed temperature. Upon very long mixing time (150 min), all PPS and PPA chains are fully transformed into a random copolymer characterized by a single amorphous phase.  相似文献   

17.
Summary: we have investigated by DSC and FTIR the miscibility and phase behaviour of binary and ternary blends of different ratios of poly(styrene-co-methacrylic acid) containing 15 mol% of methacrylic acid (SMA15) with poly(styrene-co-N,N-dimethylacrylamide) containing 17 mol% of N,N,-dimethylacrylamide (SAD-17) and poly(styrene- co-4-vinylpyridine) containing 15 mol% of 4-vinylpyridine. SMA15 is miscible with both SAD17 and S4VP15 and interacts more strongly with S4VP15 than with SAD17 as evidenced by the positive deviations from linear average line observed with these blends and the appearance of new bands in the 1800–1550 cm−1 region. This behaviour is known as ΔK effect. The FTIR study confirms that though the specific intermolecular interactions that occurred with each pair of the SMA15/S4VP15 and SMA15/SAD17 binary components are of different strength, they still exist in the ternary blend. Even though the three binary polymer pairs are individually miscible, the ternary system of SMA15/S4VP15/SAD17 exhibits only partial miscibility with small loop of immiscibility due to a significant ΔK effect. These results obtained by DSC and FTIR are in a fair agreement with theoretical prediction applying the Painter-Coleman association model.  相似文献   

18.
Hydrogen‐bonding interactions between bisphenol A (BPA) and two proton‐accepting polymers, poly(2‐vinylpyridine) (P2VPy) and poly(N‐vinyl‐2‐pyrrolidone) (PVP), were examined by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The Flory–Huggins interaction‐energy densities of BPA/P2VPy and BPA/PVP blends were determined by the melting point depression method. The interaction parameters for both BPA/P2VPy and BPA/PVP blend systems were negative, demonstrating the miscibility of BPA with P2VPy as well as PVP. The miscibility of ternary BPA/P2VPy/PVP blends was examined by DSC, optical observation, and solid‐state nuclear magnetic resonance spectroscopy. The experimental phase behavior of the ternary blend system agreed with the spinodal phase‐separation boundary calculated using the determined interaction‐energy densities. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1125–1134, 2002  相似文献   

19.
Even though poly(ethylene oxide) (PEO) is immiscible with both poly(l ‐lactide) (PLLA) and poly(vinyl alcohol) (PVA), this article shows a working route to obtain miscible blends based on these polymers. The miscibility of these polymers has been analyzed using the solubility parameter approach to choose the proper ratios of the constituents of the blend. Then, PVA has been grafted with l ‐lactide (LLA) through ring‐opening polymerization to obtain a poly(vinyl alcohol)‐graft‐poly(l ‐lactide) (PVA‐g‐PLLA) brush copolymer with 82 mol % LLA according to 1H and 13C NMR spectroscopies. PEO has been blended with the PVA‐g‐PLLA brush copolymer and the miscibility of the system has been analyzed by DSC, FTIR, OM, and SEM. The particular architecture of the blends results in DSC traces lacking clearly distinguishable glass transitions that have been explained considering self‐concentration effects (Lodge and McLeish) and the associated concentration fluctuations. Fortunately, the FTIR analysis is conclusive regarding the miscibility and the specific interactions in these systems. Melting point depression analysis suggests that interactions of intermediate strength and PLOM and SEM reveal homogeneous morphologies for the PEO/PVA‐g‐PLLA blends. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1217–1226  相似文献   

20.
In the present work, blends of poly(ethylene oxide) (PEO), poly(acrylonitrile-co-methyl acrylate) (PANMA) and poly(4-vinylphenol-co-2-hydroxyethyl methacrylate) (PVPh-HEM) were studied by DSC, FTIR and electrochemical impedance spectroscopy (EIS). PEO/PANMA blends were found to be immiscible, while PEO/PVPh-HEM blends are miscible and PVPh-HEM/PANMA exhibits partial miscibility behaviour. The ternary PEO/PANMA/PVPh-HEM blends exhibited miscible compositions for PVPh-HEM and PEO-rich systems. The miscibility observed is a direct consequence of the hydrogen bond interactions among the polymer chains, in which the phenol groups in PVPh-HEM interact with both PEO and PANMA chains. The proton conductivity of a selected membrane based on the ternary blend containing 60% PEO and doped with H3PO4 aqueous solution reached 8 × 10−3 Ω−1 cm−1 at room temperature and 3 × 10−2 Ω−1 cm−1 at 80 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号