首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 554 毫秒
1.
The value of boron, in addition to cadmium, as a thermal neutron filter for the epithermal neutron activation of short-lived radionuclides is shown to depend on sample matrix. Activation ratios of fifty nuclides are measured and the improvement in sensitivity is calculated for geological and biological matrices. The addition of boron, in the case of geological samples where the major interference is Al, improved detection for only F, Y, Sn, Ba, Er, W and Pt. In biological samples where Na is a problem the detection limits for F, Br, Rb, Y, Mo, Pd, Sn, Sb, I, Ba, Nd, Sm, Gd, Er, Hf, W, Re, Pt, Au, Th and U are all theoretically improved.  相似文献   

2.
The cadmium and boron ratios from 44 elements, totally 66 nuclides, were determined in the inner and outer irradiation sites of the Miniature Neutron Source Reactor (MNSR). China Institute of Atomic Energy. A permanent Cd-shielded epithermal neutron irradiation site has been designed and installed in the outer of the beryllium reflector of this reactor. Elements e.g., I, Br, Sr, Si, Th and U in biological samples, such as foodstuff, water and blood, geological and environmental samples, such as soil, rock, sediment and vegetable leaves were analyzed by BN-shielded epithermal neutron activation analysis (ENAA), and Au, As, Sb, Th and U by Cd-shielded ENAA. The results show that the detection limits of these elements by ENAA are better by a factor of 1.5–7 than those with conventional NAA.  相似文献   

3.
Nuclear data relevant to the determination of elements in geological materials by instrumental neutron activation analysis using a combination of epithermal neutron activation and Compton suppression counting are presented. The feasibility of this combination is discussed considering data for desired as well as interfering nuclides. Among elements determined after short irradiation, the conditions for Sr, Zr, I, Cs, Eu and U should be improved. After long epithermal irradiation and appropriate decay, Compton suppression should lead to improvement in determination of As, Rb, Sr, Mo, Sn, Sb, Ba, Gd, Ho, Tm, W, Au, Th, and U. In the case of Ga, Se, Ag, In, Cs, Tb, Yb, Hf, Ta, and W, the use of Compton suppression in connection with epithermal activation is not recommended because the radionuclides concerned decay with coincident γ-rays. In general, the use of Compton suppression should improve the determination of trace elements in geological materials by epithermal neutron activation analysis, but more work is needed to better quantify these improvements.  相似文献   

4.
The chemical homogeneity of 10 mg samples of the (U. S.) National Bureau of Standards standard reference material 1633a (coal flyash) was determined for several elements by instrumental neutron activation analysis. The homogeneity was tested for the purpose of using small samples of the flyash as a multielement comparator standard. For small sample masses the flyash may be unacceptably heterogeneous for Fe, Co, Ba, and perhaps As and Sb. Homogeneity is improved by grinding the flyash. For comparison, homogeneity data for USGS GSP-1 is also presented.  相似文献   

5.
An epithermal neutron activation analysis (ENAA) procedure has been evaluated in which samples packed in polyethylene capsules are irradiated during 15 minutes only, and induced activities are counted using well-type Ge-spectrometry. The evaluation was carried out in order to improve on ease of operation in ENAA. Biological and sediment reference materials have been analyzed. Compared to routine INAA, an improvement in detection limits was observed for As, Au, Cd, Mo, Ni, Sb, Sm, Sr, Ta, U, W and Zn. By Au–Zr neutron flux monitors, epithermal flux gradients have been determined. Concentrations found in the reference materials were generally in agreement with certified and consensus values.  相似文献   

6.
The improvement of detection limits for trace elements in geological samples by epithermal neutron activation analysis is examined. The relative merits of cadmium, boron and composite cadmium+boron filters are compared for trace elements Ni, As, Pd, Cd, Sb, W, Ir, Pt and Au, and interfering elements Na, K, Sc, Cr, Fe, Co and Cu. A boron filter gives optimum sensitivity for the trace elements based on interference from46Sc, but the detection limits are only improved 2–5 times. Ma imum possible improvement, which is shown by Ni, gives sensitivities 5 times better under cadmium and 15 times under boron.  相似文献   

7.
An instrumental neutron activation analysis technique has been developed for the determination of As, Au, Ba, Co, Cr, Fe, Hf, Sb, Ta, Th, U, W and Zn in large (10–15 g) geological samples using in-pool irradiation with a SLOWPOKE-2 reactor. The technique allows for the simultaneous irradiation of multiple samples using a neutron flux of between 4·1013 and 8·1013 n·m–2·s–1. The detection limits obtained using the analytical methodology described in this paper are acceptable for exploration geochemistry and the technique has been used to analyze samples collected as part of a metallic minerals survey of Jamaica.  相似文献   

8.
For the analysis of pottery fragments from ancient Lefkanti, instrumental neutron activation analysis was used. To have a good throughput of samples, a detectable series of short-lived isotopes was selected for the investigation. The problem of the initial high radioactivity, which normally hinders a fast -spectroscopic analysis, was eluded by using loss-free counting technology. This technology allows the measurement of pottery samples of about 100 mg size 1 day after a 30 min epithermal irradiation. Up to 15 samples could be analyzed in one day under these working conditions, having the possibility to analyze the elements As, Eu, Ga, Gd, La, Mn, Sb, Sm, Th, U, W and Zn, which are enough to perform statistical characterizations of potteries.  相似文献   

9.
The concentration of As, Ba, Ca, Co, Cr, Cs, Dy, Eu, Fe, Ga, Hf, K, La, Lu, Mn, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, U, Yb, and Zn were determined by instrumental neutron activation analysis in block shale samples of the New Albany Group (Devonian-Mississippian) in the in the Illinois Basin. Uranium content of the samples was as high as 75 ppm and interfered in the determination of samarium, molybdenum, barium and cerium. In the determination of selenium a correction was made for interference from tantalum. U, As, Co, Mo, Ni and Sb as well as Cu, V and pyritic sulphur which were determined by other methods, were found to correlate positively with the organic carbon content of the samples.  相似文献   

10.
Concentrations of major and trace elements in volcanic rock and soil samples, including geological standard reference materials, were determined by neutron activation analysis (NAA) and prompt gamma activation analysis (PGAA), both using the k 0-standardization method. The paper highlights the different experimental procedures, such as sample preparation, data collection and spectrum evaluation. In geological samples, PGAA gives precise results for major elements (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K and—as a unique method—for H), for some of the light trace elements as B and Cl, as well as for Sc, S, Cr, Co, Ni, Cd, Nd, Sm and Gd. NAA is sensitive for the rare earth elements, and for many major (Ti, Al, Fe, Mn, Mg, Ca, Na, K) and trace elements (e.g.: Sc, V, Cr, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Zr, As, Sb, Ce, Ba, Hf, Ta, W). For most major elements the results obtained by the two methods show good agreement. The comparison of the results obtained for trace elements is not always possible, since PGAA is less sensitive and concentrations are often below its detection limits. Nevertheless, the complementarity of NAA and PGAA allows nearly panoramic analysis of geological materials.  相似文献   

11.
A comparison of two group separation techniques using either NaI(Tl) or Ge(Li) spectrometry is presented for trace element determination in biological materials by neutron activation analysis. The capabilities of both procedures are described in terms of detection limits, precision and accuracy for the determination of the elements As, Cd, Co, Cr, Cu, Fe, Hg, Mo, Ni, Sb, Se, Sn, and Zn in various types of biological samples. For this purpose the (standard) reference materials NBS SRM-1577 Bovine Liver, Bowen's Kale, IAEA Pig Kidney H-7 and IAEA Milk Powder A-11 were analyzed. An attempt was also made to minimize blank values for several elements.  相似文献   

12.

The application of preconcentration by dry-ashing to the neutron activation analysis of biological samples using a SLOWPOKE-2 low-power reactor is reported. Samples of selected food crops (banana, callaloo, carrot, mango, and yam) and bioindicator plants (lichen, moss, Tillandsia sp., and tree bark) were analysed both as plant tissue, and as ashed sample. The results are presented for 21 elements. Good agreement between both procedures (<10% relative standard error) was obtained for 13 elements: Al, Ca, Cd, Cr, Fe, K, La, Mg, Mn, Na, Sm, Ti, and V. For Dy, Rb, and Zn the agreement was 10-15%. Relatively poorer agreement (>15-30%) was obtained for As, Br, Cl, and Sb. Dry ashing produced improved analytical results for those samples that were of low ash content. However, the increased background counts observed in ashed samples can sometimes negate the concentration gain, particularly in plants with high ash contents but low levels of certain elements.  相似文献   

13.
Epidemiology studies that examine As toxicity rely on the accurate measurement of As in biological matrices to determine exposure. Accurate measurement of As in biological matrices is challenging by instrumental NAA due to the production of high and variable activities of 24Na, 122Sb and 82Br which contribute to increased background and difficulty quantifying the 76As peak at 559 keV. This paper describes a novel radiochemical NAA method for As analysis in biological matrices. Samples were irradiated at the University of Missouri Research Reactor in a flux of 6.5E + 13 n/cm2/s. Following irradiation samples were transferred to polypropylene tubes with As carrier and digested using a combination of nitric acid and hydrogen peroxide. Arsenic was separated by absorption on magnetite nanocyrstals followed by vacuum filtration. Samples were counted using an automated sample changer and HPGe detector with a Canberra Lynx digital signal analyzer. The accuracy and precision of the RNAA results were evaluated by measuring As in NIST SRM 1575 Pine Needles, 1571 Orchard Leaves, 1566 Oyster Tissue, 1577 Bovine Liver, and NCS DC 73347 Hair. Arsenic was measured in duplicate nail samples by instrumental neutron activation analysis followed by radiochemical neutron activation analysis.  相似文献   

14.
Recoveries of selected elements were studied for fast decomposition of biological and other materials using alkaline-oxidative fusion in a mixture of NaOH and Na2O2 at 850–900 °C. The procedure yields total mineralization of samples within 2 to 3 minutes. It is especially suitable in radiochemical activation analysis (RAA) for the determination of elements forming short-lived radionuclides. Recoveries of the elements F, Si, S, Cl, Ti, V, Mn, Ge, As, Br, Mo, Ru, In, Sb, I, Re, Os, and U determined using radiotracers were in the range 95–100%, while those for Se and Hg were significantly lower and highly variable.  相似文献   

15.
A method for the neutron activation analysis of arsenic, selenium and antimony has been developed. A radiochemical separation is performed by distillation followed by precipitation of the individual elements. Selenium and arsenic are precipitated by reduction to the elemental form while antimony is precipitated as sulfide. The chemical yields and detection limits using 0.5 g samples are the following: As 90–100%, 0.4 ppb, Se 80–100%, 8 ppb and Sb 50–70%, 0.2 ppb. Results from the analysis of nine international biological standard samples are given.  相似文献   

16.
Neutron activation analysis (NAA) methods have been developed for the determination of major, minor and trace elements in duplicate diets and individual food items. These include a cyclic instrumental NAA (CINAA) method for measuring Se content through its short-lived nuclide77mSe; epithermal INAA (EINAA) for I and As; conventional INAA for Br, Ca, Cl, Co, Cr, Fe, K, Mg, Mn, Na, Rb, Sb, Sc, Sn and Zn; combination of EINAA and INAA for Al; radiochemical NAA (RNAA) for As, Au, Co, Cu, Fe, Hg, Mo, Sb, Se and Zn; and preconcentration NAA (PNAA) for U and Th. Accuracy of measurements have been evaluated by analyzing a number of biological and diet reference materials. Multielement concentrations of diets and foods have been measured by these methods.  相似文献   

17.
In solution antimony exists either in the pentavalent or trivalent oxidation state. As Sb(III) is more toxic than Sb(V), it is important to be able to perform a quantitative speciation analysis of Sb's oxidation state. The most commonly applied chromatographic methods used for this redox speciation analysis do, however, often show a low chromatographic Sb recovery when samples of environmental or biological origin are analysed. In this study we explored basal chemistry of antimony and found that formation of macromolecules, presumably oligomeric and polymeric Sb(V) species, is the primary cause of low chromatographic recoveries. A combination of HPLC-ICP-MS, AFFF-ICP-MS and spin-filtration was applied for analysis of model compounds and biological samples. Quantitative chromatographic Sb redox speciation analysis was possible by acidic hydrolysis of the antimony polymers prior to analysis. Sample treatment procedures were studied and the optimum solution was acidic hydrolysis by 1 M HCl in the presence of chelating ligands (EDTA, citrate), which stabilise the trivalent oxidation state of Sb.  相似文献   

18.
Present investigation deals with neutron activation analysis of gold in some varieties of geological samples related to auriferous quartz veins. A few plant specimens of the area were also analyzed. The gold contents in the rock samples as determined by the destructive way of analysis vary in the range 10−5 to 10−7%. In case of plant samples, however, the non-destructive method of analysis of the plant ashes was followed and the concentration of gold was found to be of the order of 10−5%. In plants, besides gold, some associated elements, such as La, Ce, Sm, Lu, Zr, Hf, Se, W, As and Sb were also identified.  相似文献   

19.
A nondestructive method for the analysis of Sb and Cl in synthetic rubbers by 14 MeV neutron activation analysis has been developed and evaluated by comparisons with microanalytical and thermal neutron activation analysis results. The method is most precise when a rubber with known amounts of Sb and Cl is used as a standard. Samples containing 0.07 to 2.5 wt.% Sb and 2.5 to 15.9 wt.% Cl have been analyzed and precision for the method is 10% or better. Antimony and Cl detection limits are 0.02 and 0.5 wt.% respectively. Agreement among the three methods is excellent; the thermal activation analysis method is more precise and simpler to apply if only Sb needs to be determined in a sample. This work was supported by the U.S. Department of Energy (DOE) under Contract DE-AC04-76-DP00789. A U.S. DOE facility.  相似文献   

20.
建立了氢化物发生-原子荧光光谱法测定1∶5万区域地质调查样品中的As、Sb、Bi、Hg等4种元素的分析方法,通过采用王水(1+1)分解样品,在盐酸(5%)介质中用硼氢化钾作为还原剂对As、Sb、Bi、Hg等4种元素进行氢化物发生-原子荧光光谱法测定。方法检出限为0.008 9(As)、0.008 1(Sb)、0.008 1(Bi)、0.001 7(Hg)μg/g,测定结果的相对标准偏差(RSD,n=12)为0.82%~7.6%,准确度△lgC=-0.01~0.02。方法简便、成本低,检测结果准确,检出限、准确度及精密度均能达到行业规范要求,适用于1∶5万区域地质调查样品水系沉积物、土壤中As、Sb、Bi、Hg等4种元素的测定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号