首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The rate and molecular weight profiles were obtained for the spontaneous alternating copolymerizations conducted with diethylaluminum chloride. The rate formally fitted an expression, R = kp[MMA][Sty], and the rate constant was established by two distinct methods: (1) from the yield versus time data and (2) from initial rate over a range of initial concentrations; it was determined as 5.4 × 10?6 l./mole-sec with Ea = 4.2 kcal/mole. Molecular weights were determined by gel-permeation chromatography. No increase in molecular weight was observed with increased reaction time. Thus living centers or diradicals are not involved in the process. The M?n shows a steady decrease with increase in monomer-diethylaluminum chloride concentration but the rate is maximum at equimolar monomer concentrations. The data are interpreted on a chain-transfer mechanism and show close agreement to a model in which the excess complexed acceptor monomer is the transfer agent. The chain-transfer constant of 7.1 × 10?4 l./mole-sec is several orders of magnitude greater than for uncomplexed systems.  相似文献   

2.
The alternating copolymerization of styrene and methyl α-chloroacrylate (MCA) with diethylaluminum chloride (Et2AlCl) in benzene at 0°C has been investigated. The copolymer has an equimolar composition irrespective of the feed monomer composition, the copolymer yield and the amount of Et2AlCl used. The copolymerization proceeds first very rapidly and then rather slowly after attaining a certain yield which varies proportionally to the amount of Et2AlCl used. A maximum copolymer yield is observed at about 60% MCA feed composition. The 1H-NMR analyses of dyad, triad, and pentad of the alternating deuterated α-d-St-MCA copolymer indicate that the configuration of this copolymer can be explained by a single parameter, coisotacticity σ(σ = 0.69). A favorable mechanism of the alternating propagation as well as of the stereoregularity control is discussed.  相似文献   

3.
4.
A kinetic study of the propagation mechanism of the alternating copolymerization of styrene (St) with methyl methacrylate (MMA) in the presence of a complexing agent (diethylaluminum chloride, DEAC) in bulk and in tetrachloroethylene solutions at a molar ratio DEAC/MMA = 0.5 has been carried out. It has been shown that the copolymerization is a chain radical process characterized by a short active-center lifetime, bimolecular termination, and high rate of chain transfer to the complexed MMA. A kinetic scheme has been proposed for the propagation mechanism of alternating copolymerization in the presence of a complexing agent not requiring independent measurements of the equilibrium constant of complexation. It has been found that spontaneous and UV-initiated copolymerizations in the system have different mechanisms of initiation and a common mechanism of propagation. The propagation proceeds by addition of single monomers as well as donor-acceptor complexes of the comonomers to the propagation radicals, with the first mechanism being predominant. Inclusion of the monomers in the complex leads to an increase of the St reactivity and to a decrease of the MMA reactivity in propagation to the corresponding macroradicals in comparison with the reactivity of the free monomers. A number of kinetic and statistical parameters of the propagation reaction have been calculated.  相似文献   

5.
6.
A novel monomer, 2-acryloyl thioxanthone (TXA), was prepared by reaction of 2-hydroxy thioxanthone with acryloyl chloride. Copolymerization of TXA with methyl methacrylate (MMA) in DMF at 80°C was studied in order to evaluate relative reactivities of these monomers. Values of 1.36 and 0.5 were found for the respective reactivity ratios of MMA and TXA, respectively. The resonance stabilization and polar properties were determined and discussed in terms of spectroscopic data.  相似文献   

7.
By the use of various boron compounds methyl methacrylate and styrene were copolymerized under photoirradiations at ?20°C. The alternately regulating activities of the boron compounds in the copolymerizations were in the following order: boron trichloride > ethylboron dichloride > boron trifluoride > diethylboron chloride ? triethylboron (?0). Boron trichloride and ethylboron dichloride exhibited such high regulating activities that their presence in 1 mol% in the charged methyl methacrylate was sufficient to complete equimolar alternating copolymerization. The alternating copolymerization proceeded in the steady state. The copolymerization rates decreased in the following order: boron trichloride ? ethylboron dichloride > diethylboron chloride ? triethylboron (?0). The cotacticities of methyl methacrylate-centered triads in the resulting copolymers were identical to those prepared with boron trichloride, ethylboron dichloride, and diethylboron chloride. The mechanism of the alternating copolymerization is discussed.  相似文献   

8.
李悦生 《高分子科学》2011,29(5):627-633
Mono salicylaldiminato vanadium(Ⅲ) complexes(1a-1f)[RN = CH(ArO)]VCl2(THF)2(Ar = C6H4(1a-1e),R = Ph,1a;R = p-CF3Ph,1b;R = 2,6-Me2Ph,1c;R = 2,6-iPr2Ph,1d;R = cyclohexyl,1e;Ar = C6H2tBu2(2,4),R = 2,6-iPr2Ph, 1f) and bis(salicylaldiminato) vanadium(Ⅲ) complexes(2a-2f)[RN = CH(ArO)]2VCl(THF)x(Ar = C6H4(2a-2e),x = 1 (2a-2e),R = Ph,2a;R =p-CF3Ph,2b;R = 2,6-Me2Ph,2c;R = 2,6-iPr2Ph,2d;R = cyclohexyl,2e;Ar = C6H2tBu2(2,4),R = 2,6-iPr2Ph,x = 0,2f) have been evaluated as the active catalysts for ethylene/1-hexene copolymerization in the presence of Et2AlCl.The ligand substitution pattern and the catalyst structure model significantly influenced the polymerization behaviors such as the catalytic activity,the molecular weight and molecular weight distribution of the copolymers etc.The highest catalytic activity of 8.82 kg PE/(mmolV·h) was observed for vanadium catalyst 2d with two 2,6-diisopropylphenyl substituted salicylaldiminato ligands.The copolymer with the highest molecular weight was obtained by using mono salicylaldiminato vanadium catalyst 1f having ligands with tert-butyl at the ortho and para of the aryloxy moiety.  相似文献   

9.
10.
11.
Graft copolymerization of 2-hydroxyethyl methacrylate(HEMA) and mixtures of HEMA with methyl methacrylate (MMA) onto hide powder was attempted using ceric ammonium nitrate as initiator, with a view to optimize the conditions for graft copolymerization. Percent grafting and grafting efficiency were calculated for various variables such as monomer concentration, initator concentration and mole ratio of HEMA to MMA. Rp, Rg and Rh (rates of polymerization, grafting and homopolymerization respectively) were also evaluated. It was observed that Rp increased linearly with increasing concentration of MMA except at very low concentrations of the monomer. An explanation is given for the effect of variables on extent of grafting and grafting efficiency.  相似文献   

12.
13.
Chain transfer constants to monomer have been measured by an emulsion copolymerization technique at 44°C. The monomer transfer constant (ratio of transfer to propagation rate constants) is 1.9 × 10?5 for styrene polymerization and 0.4 × 10?5 for the methyl methacrylate reaction. Cross-transfer reactions are important in this system; the sum of the cross-transfer constants is 5.8 × 10?5. Reactivity ratios measured in emulsion were r1 (styrene) = 0.44, r2 = 0.46. Those in bulk polymerizations were r1 = 0.45, r2 = 0.48. These sets of values are not significantly different. Monomer feed compcsition in the polymerizing particles is the same as in the monomer droplets in emulsion copolymerization, despite the higher water solubility of methyl methacrylate. The equilibrium monomer concentration in the particles in interval-2 emulsion polymerization was constant and independent of monomer feed composition for feeds containing 0.25–1.0 mole fraction styrene. Radical concentration is estimated to go through a minimum with increasing methyl methacrylate content in the feed. Rates of copolymerization can be calculated a priori when the concentrations of monomers in the polymer particles are known.  相似文献   

14.
Monomer reactivity ratios, r1 and r2 were determined in the anionic copolymerizations of methyl methacrylate (MMA, M1) with ethyl (EtMA), isopropyl (i-PrMA), tert-butyl (t-BuMA), benzyl (BzMA), α-methylbenzyl (MBMA), diphenylmethyl (DPMMA), α,α-dimethylbenzyl (DMBMA), and trityl (TrMA) methacrylates (M2) by use of n-BuLi as an initiator in toluene and THF at -78°C. The order of the reactivity of the monomers towards MMA anion was DPMMA > BzMA > MMA > EtMA > MBMA > i-PrMA > t-BuMA > TrMA > DMBMA in toluene and TrMA > BzMA > MMA > DPMMA > EtMA > MBMA > i-PrMA > DMBMA > t-BuMA in THF. Except for the extremely low reactivity of TrMA and DPMMA in toluene due to steric hindrance, the order was explained in terms of the polar effect of the ester groups. A linear relationship was found between log (1/r1) and Taft's σ* values of the ester groups, where the ρ* value was 1.1. The plots of log (1/r1) vs. the 1Ha (cis to the carbonyl) and 13Cß chemical shifts of the monomers were also on straight lines. The polymer obtained in the copolymerization of MMA with TrMA in toluene by n-BuLi at -78°C was a mixture of poly-MMA and a copolymer, suggesting that there exist two kinds of growing centers.  相似文献   

15.
Bis(aqua)bis((difluoroboryl)dimethylglyoximate)cobalt(II) (COBF) has proven to be a very effective catalytic chain transfer agent in the copolymerization of MA and MMA. The chain transfer activity depends on the fraction of MMA in the monomer feed and the total radical concentration. The polymerization can be described by a model that combines features of catalytic chain transfer for MMA homopolymerization and cobalt mediated controlled radical polymerization of MA. According to the model part of the COBF is covalently bonded to MA‐ended polymeric radicals and cannot take part in the chain transfer step. The model can also account for the observed inhibition time that occurs at high chain transfer agent concentration and low fraction of MMA in the monomer feed.  相似文献   

16.
17.
In order to clarify the mechanism of initiation by dimethylbenzylanilinium chloride (DMBAC), the polymerization of methyl methacrylate with DMBAC has been investigated at 60–80°C. From the results of kinetic and tracer studies, it was found that this polymerization proceeded via a radical mechanism and benzyl radical was not an initiating species. However, it was also noted that DMBAC easily dissociated into dimethylaniline and benzyl chloride under the present conditions, and the overall activation energy for the methyl methacrylate polymerization was 14.6 kcal/mole. These observations indicate that initiating radicals other than benzyl radical, i.e., phenyl or methyl radicals, may be produced through a redox interaction between DMBAC and dimethylaniline dissociated from DMBAC.  相似文献   

18.
Graft copolymerization of methyl methacrylate onto curdlan was first investigated. In the graft copolymerization initiated by ammonium persulfate (APS) in DMSO under a homogeneous condition, the resulting graft copolymers had low molecular weights and low grafting percentages. However, the initiation by APS in water gave graft copolymers having relatively higher molecular weight ( ) and higher grafting percentage (548%) than those copolymers obtained by the homogeneous condition. When the graft copolymerization was carried out by cerium (IV) ammonium nitrate-HNO3 initiation, the graft copolymer had the highest grafting percentage of 1620% without degradation of the curdlan backbone. The resulting graft copolymers were soluble in DMSO. The graft copolymers obtained by the cerium salt had narrow molecular weight distributions () compared with those by the APS catalyst in DMSO or water. The graft copolymers decomposed with sulfuric acid to isolate PMMAs, which molecular weights were larger than that of the corresponding homo-PMMAs. The structure of the grafted copolymers was characterized by IR, 13C NMR, DSC, and SEM. It was found that the graft copolymers exhibited the glass transition temperature (Tg), though curdlan had no Tg. As the grafting percentage increased, the Tg increased to reach 270°C, which was higher than the decomposition temperature of curdlan. The surface image of the grafted copolymers observed by SEM, showed smoothless compared with that of curdlan. It was also revealed that the graft copolymers having the grafting percentage of 1620% swelled in common organic solvents up to 4.5 times of the weight of the dry graft copolymer to form gels. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
The alternating copolymerization of methyl methacrylate with styrene in the presence of stannic chloride at ?50°C in toluene was kinetically investigated both under photoirradiation and with the tri-n-butylboron-benzoyl peroxide initiator. The concentrations of the binary and ternary molecular complexes in the copolymerization solution were estimated by use of the equilibrium constants. The rates are found to be proportional to the 1.5th and 1.0th orders of the concentration of the ternary molecular complex composed of stannic chloride, methyl methacrylate, and styrene, under photoirradiation and with initiator, respectively. The conversion increases proportionally with the polymerization time, while the degree of polymerization is constant irrespective of the time. The rates depend linearly upon the square root of the intensity of the incident light and upon the concentration of tri-n-butylboron, respectively. The alternating copolymerization is confirmed experimentally to precede the homopolymerization of the monomer charged in large excess both under photoirradiation and with initiator. The kinetic results indicate consistently that the alternating copolymerization proceeds through the homopolymerization of the ternary molecular complex in the steady state with a bimolecular termination. Both the conventional radical mechanism and the double complex mechanism are unsuitable for the present alternating copolymerization.  相似文献   

20.
In the dispersion copolymerization of methyl methacrylate (MMA) and n-butyl acrylate (BA), the particle size increases with an increasing MMA fraction in the comonomer. The power dependence of the particle size on the initiator concentration also increases with an increasing MMA concentration. Similar to what can be found in the homopolymerizations, two populations can be observed in the molecular weight distributions of the copolymers. Core–shell structured particles with a poly(methyl methacrylate)-rich core and a poly(n-butyl acrylate)-rich shell result from the copolymerizations because of the significantly different reactivity ratios. The reaction rates of the dispersion copolymerization are lower than those of the homopolymerization of BA and close to or lower than those of the homopolymerization of MMA, depending on the ratio of the monomers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2105–2112, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号