首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The development in Paper I is extended to multifunctional condensations where the functional groups exhibit unequal reactivities induced by substitution effects in the course of the polymerization. A system R(A)2/R′(B)3 is examined to determine how the gel point varies with the strength and positive or negative sense of the substitution effect. As in Paper I, intramolecular interactions are not considered.  相似文献   

2.
The effect of unequal intrinsic reactivity of functional groups on the molecular distribution in a linear step polymerization system is studied. In an R(A)2/R′(B)2 copolycondensate, the dependence of the polydispersity index on the relative reactivities of the two A-functional groups, at different extents of reaction, is examined in detail.  相似文献   

3.
Trinuclear complexes of group 6, 8, and 9 transition metals with a (μ3‐BH) ligand [(μ3‐BH)(Cp*Rh)2(μ‐CO)M′(CO)5], 3 and 4 ( 3 : M′=Mo; 4 : M′=W) and 5 – 8 , [(Cp*Ru)33‐CO)23‐BH)(μ3‐E)(μ‐H){M′(CO)3}] ( 5 : M′=Cr, E=CO; 6 : M′=Mo, E=CO; 7 : M′=Mo, E=BH; 8 : M′=W, E=CO), have been synthesized from the reaction between nido‐[(Cp*M)2B3H7] (nido‐ 1 : M=Rh; nido‐ 2 : M=RuH, Cp*=η5‐C5Me5) and [M′(CO)5 ? thf] (M′=Mo and W). Compounds 3 and 4 are isoelectronic and isostructural with [(μ3‐BH)(Cp*Co)2(μ‐CO)M′(CO)5], (M′=Cr, Mo and W) and [(μ3‐BH)(Cp*Co)2(μ‐CO)(μ‐H)2M′′H(CO)3], (M′′=Mn and Re). All compounds are composed of a bridging borylene ligand (B?H) that is effectively stabilized by a trinuclear framework. In contrast, the reaction of nido‐ 1 with [Cr(CO)5 ? thf] gave [(Cp*Rh)2Cr(CO)3(μ‐CO)(μ3‐BH)(B2H4)] ( 9 ). The geometry of 9 can be viewed as a condensed polyhedron composed of [Rh2Cr(μ3‐BH)] and [Rh2CrB2], a tetrahedral and a square pyramidal geometry, respectively. The bonding of 9 can be considered by using the polyhedral fusion formalism of Mingos. All compounds have been characterized by using different spectroscopic studies and the molecular structures were determined by using single‐crystal X‐ray diffraction analysis.  相似文献   

4.
The development in Part I is extended to linear step polymerizations where the functional groups exhibit unequal reactivities induced by substitution effects in the course of the polymerization. An R(A)2/R′(B)2 copolycondensate is examined to determine how the polydispersity index varies with the strength and positive or negative sense of the substitution effect.  相似文献   

5.
The reactivity of a diruthenium tetrahydride complex towards three selected dihydroboranes was investigated. The use of [DurBH2] (Dur=2,3,5,6-Me4C6H) and [(Me3Si)2NBH2] led to the formation of bridging borylene complexes of the form [(Cp*RuH)2BR] (Cp*=C5Me5; 1 a : R=Dur; 1 b : R=N(SiMe3)2) through oxidative addition of the B−H bonds with concomitant hydrogen liberation. Employing the more electron-deficient dihydroborane [3,5-(CF3)2-C6H3BH2] led to the formation of an anionic complex bearing a tetraarylated chain of four boron atoms, namely Li(THF)4[(Cp*Ru)2B4H5(3,5-(CF3)2C6H3)4] ( 4 ), through an unusual, incomplete threefold dehydrocoupling process. A comparative theoretical investigation of the bonding in a simplified model of 4 and the analogous complex nido-[1,2(Cp*Ru)2(μ-H)B4H9] ( I ) indicates that there appear to be no classical σ-bonds between the boron atoms in complex I , whereas in the case of 4 the B4 chain better resembles a network of three B−B σ bonds, the central bond being significantly weaker than the other two.  相似文献   

6.
Using sodium as the catalyst and benzoylchloride as cocatalyst, copolymerizations of γ-butyrolactam with ε-caprolactam and ω-capryllactam were carried out at 100°C. In a similar manner copolymerizations of ε-cparolactam, ω-capryllactam, and ε-laurinlactam were achieved at 150 and 250°C without a cocatalyst. The 90.5-MHz 13C-NMR spectra of all random copolyamides in fluorosulfonic acid show three or more CO signals that allow the ratio of homogeneous (A? A and B? B) to heterogeneous (A? B and B? A) amide groups to be determined. These results cleárly demonstrate that despite the reaction temperature or reactivity of the lactams the copolyamides do not contain long homogeneous blocks (An and Bn). The CO signals of the random copolyamides were assigned by comparison with the corresponding homopolyamides and alternating copolyamides. Solutions of the alternating copolyamide (-β-Ala-ε-Aca-)n, in fluorosulfonic acid were measured to determine whether the 13C chemical shifts and line widths are dependent on concentration.  相似文献   

7.
Novel hyperbranched poly(amido amine)s containing tertiary amines on the backbones and acryl or secondary amines as the surface groups were successfully synthesized via the Michael addition polymerizations of a triacrylamide [1,3,5‐triacryloylhexahydro‐1,3,5‐triazine (TT)] and a difunctional amine [n‐butylamine (BA)] NMR techniques were used to clarify the structures of hyperbranched polymers and polymerization mechanism. The reactivity of the secondary amine formed in situ was much lower than that of the primary amines in BA. When the feed molar ratio was 1:1 TT/BA, the secondary amine formed in situ was almost kept out of the reaction before the BA (AA′) and TT (B3) monomers were consumed, and this led to the formation of A′B2 intermediates containing one secondary amine group and two acryl groups. The self‐polymerization of the A′B2 intermediates produced hyperbranched polymers bearing acryl as surface groups. For the polymerization with the feed molar ratio of 1:2 TT/BA, A′2B intermediates containing one acryl group and two secondary amine groups were accumulated until self‐polymerization started; the self‐polymerization of the intermediates formed hyperbranched polymers with secondary amines as their surface groups. Modifications of surface functional groups were studied to form new hyperbranched polymers. The hyperbranched poly(amido amine)s were amorphous. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6226–6242, 2006  相似文献   

8.
The structure of the title compound, 2(CH3OCO)C6H4B(OH)2 or C8H9BO4, involves two crystallographically independent conformers, A and B, in a 1:2 ratio; mol­ecules of conformer A are located on a crystallographic mirror plane. The most striking difference between the two independent mol­ecules is the opposite orientation of the methoxy­carbonyl groups, while the conformations of the boronic acid groups vary more subtly. Mol­ecules of both types are ordered to produce a specific hydrogen‐bonding network that can be inter­preted in terms of a layer lying parallel to (100). Within the layer, B mol­ecules are linked with each other by two different O—H⋯O bonds to form an infinite chain where two centrosymmetric dimeric motifs can be distinguished.  相似文献   

9.
The electron affinity of B n nanoparticles (n = 2–140) has been calculated in terms of the shell theory of nanoparticles with orbital hybridization and excited electronic states of the B atom taken into account. The reactivity of B n is considered, and the electron affinities of B n , Al n , Ga n , In n , and Tl n nanoparticles are compared.  相似文献   

10.
The radiation-induced copolymerization of tetrafluoroethylene (A) and styrene (B) was studied in bulk and in perfluorotoluene at 22°C at autogenous pressure and 260 and 510 MPa. The reactivity ratio for addition to A-ended radicals, rA, is effectively zero at the two lower pressures and is in the range 0.002–0.008 at 510 MPa. The other reactivity ratio, rB, is 6 at autogenous pressure and also at 260 and 510 MPa if the A content of the charge is less than 50%. If the A content is greater than 95%, rB appears to be 100 at pressures of 260 and 510 MPa. The apparent variation in rB cannot be explained by invoking a penultimate unit effect for B-ended radicals. Polymerization rates scatter somewhat, but all rates are quite small when the A content of the charge is in the range 95–99.8%. Polymers containing as much as 66% A appear to be inherently benzene soluble but frequently contain some gel because of radiation-induced crosslinking after their formation. No very high polymers were formed that contained more than a few percent A, even at high pressure. Features that complicated the study were immiscibility of the liquid monomers, extreme variation of the monomer—copolymer compatibility with charge composition, and freezing of B at high pressure.  相似文献   

11.
The primary phosphines MesPH2 and tBuPH2 react with 9-iodo-m-carborane yielding B9-connected secondary carboranylphosphines 1,7-H2C2B10H9-9-PHR (R=2,4,6-Me3C6H2 (Mes; 1 a ), tBu ( 1 b )). Addition of tris(pentafluorophenyl)borane (BCF) to 1 a , b resulted in the zwitterionic compounds 1,7-H2C2B10H9-9-PHR(p-C6F4)BF(C6F5)2 ( 2 a , b ) through nucleophilic para substitution of a C6F5 ring followed by fluoride transfer to boron. Further reaction with Me2SiHCl prompted a H−F exchange yielding the zwitterionic compounds 1,7-H2C2B10H9-9-PHR(p-C6F4)BH(C6F5)2 ( 3 a , b ). The reaction of 2 a , b with one equivalent of R'MgBr (R’=Me, Ph) gave the extremely water-sensitive frustrated Lewis pairs 1,7-H2C2B10H9-9-PR(p-C6F4)B(C6F5)2 ( 4 a , b ). Hydrolysis of the B−C6F4 bond in 4 a , b gave the first tertiary B-carboranyl phosphines with three distinct substituents, 1,7-H2C2B10H9-9-PR(p-C6F4H) ( 5 a , b ). Deprotonation of the zwitterionic compounds 2 a , b and 3 a , b formed anionic phosphines [1,7-H2C2B10H9-9-PR(p-C6F4)BX(C6F5)2][DMSOH]+ (R=Mes, X=F ( 6 a ), R=tBu, X=F ( 6 b ); R=Mes, X=H ( 7 a ), R=tBu, X=H ( 7 b )). Reaction of 2 a , b with an excess of Grignard reagents resulted in the addition of R’ at the boron atom yielding the anions [1,7-H2C2B10H9-9-PR(p-C6F4)BR’(C6F5)2] (R=Mes, R’=Me ( 8 a ), R=tBu, R’=Me ( 8 b ); R=Mes, R’=Ph ( 9 a ), R=tBu, R’=Ph ( 9 b )) with [MgBr(Et2O)n]+ as counterion. The ability of the zwitterionic compounds 3 a , b to hydrogenate imines as well as the Brønsted acidity of 3 a were investigated.  相似文献   

12.
Reactions of Lithium Hydridosilylamides RR′(H)Si–N(Li)R″ with Chlorotrimethylsilane in Tetrahydrofuran and Nonpolar Solvents: N‐Silylation and/or Formation of Cyclodisilazanes The lithiumhydridosilylamides RR′(H)Si–N(Li)R″ ( 2 a : R = R′ = CHMe2, R″ = SiMe3; 2 b : R = R′ = Ph, R″ = SiMe3; 2 c : R = R′ = CMe3, R″ = SiMe3; 2 d : R = R′ = R″ = CMe3; 2 e : R = Me, R′ = Si(SiMe3)3, R″ = CMe3; 2 f – 2 h : R = R′ = Me, f : R″ = 2,4,6‐Me3C6H2, g : R″ = SiH(CHMe2)2, h : R″ = SiH(CMe3)2; 2 i : R = R′ = CMe3, R″ = SiH(CMe3)2) were prepared by reaction of the corresponding hydridosilylamines RR′(H)Si–NHR″ 2 a – 2 i with n‐butyllithium in equimolar ratio in n‐hexane. The unknown amines 1 e – 1 i and amides 2 f – 2 i have been characterized spectroscopically. The wave numbers of the Si–H stretching vibrations and 29Si–1H coupling constants of the amides are less than of the analogous amines. This indicates a higher hydride character for the hydrogen atom of the Si–H group in the amide in comparison to the amines. The 29Si‐NMR chemical shifts lie in the amides at higher field than in the amines. The amides 2 a – 2 c and 2 e – 2 g react with chlorotrimethylsilane in THF to give the corresponding N‐silylation products RR′(H)Si–N(SiMe3)R″ ( 3 a – 3 c , 3 e – 3 g ) in good yields. In the reaction of 2 i with chlorotrimethylsilane in molar ratio 1 : 2,33 in THF hydrogen‐chlorine exchange takes place and after hydrolytic work up of the reaction mixture [(Me3C)2(Cl)Si]2NH ( 5 a ) is obtained. The reaction of the amides 2 a – 2 c , 2 f and 2 g with chlorotrimethylsilane in m(p)‐xylene and/or n‐hexane affords mixtures of N‐substitution products RR′(H)Si–N(SiMe3)R″ ( 3 a – 3 c , 3 f , 3 g ) and cyclodisilazanes [RR′Si–NR″]2 ( 6 a – 6 c , 6 f , 6 g ) as the main products. In case of the reaction of 2 h the cyclodisilazane 6 h was obtained only. 2 c – 2 e show a very low reactivity toward chlorotrimetyhlsilane in m‐xylene and toluene resp.. In contrast to Me3SiCl the reactivity of 2 d toward Me3SiOSO2CF3 and Me2(H)SiCl is significant higher. 2 d react with Me3SiOSO2CF3 and Me2(H)SiCl in n‐hexane under N‐silylation to give RR′(H)Si–N(SiMe3)R″ ( 3 d ) and RR′(H)Si–N(SiHMe2)R″ ( 3 d ′) resp. The crystal structures of [Me2Si–NSiMe3]2 ( I ) ( 6 f , 6 g and 6 h ) have been determined.  相似文献   

13.
New ternary metal borides with compositionR. E. T 4B4 (R. E.=rare earth metal,T=transition metal) have been synthesized within the systems [La,Ce,Pr,Nd,Sm]–Os–B and [Y, La, Ce, Pr, Nd, Sm, Gd, Tb]–Ir–B. All compounds were found to be crystallizing with NdCo4B4-type structure. Magnetic measurements (80–300 K,Curie-Weiss behaviour, p ~ 16K and µeff=9.94µB for TbIr4B4) indicate Y andR. E. elements (except Ce) to be trivalent in these compounds. The crystal chemistry of the isotypic series [Y,R. E.] [Os,Ir]4B4 is discussed.
Ternäre Metallboride. [La,Ce,Pr,Nd,Sm] Os4B4 und [Y,La,Ce,Pr,Nd,Sm,Gd,Tb] Ir4B4 mit NdCo4B4-Struktur
Zusammenfassung Es wurden neue Metallboride der ZusammensetzungR. E. T 4B4 (R. E.=Seltenerdmetall,T=Übergangsmetall) innerhalb der Systeme [La,Ce, Pr,Nd,Sm]–Os–B und [Y,La,Ce,Pr,Nd,Sm,Gd,Tb]–Ir–B hergestellt. Alle Verbindungen kristallisieren entsprechend dem NdCo4B4-Typ. Magnetische Messungen (80–300K,Curie-Weiss-Verhalten, p ~ 16K und µeff=9.94µB für TbIr4B4) zeigen an daß Y und dieR. E.-Elemente (ausgenommen Ce) in diesen Verbindungen trivalent sind. Die Kristallchemie der isotypen [Y,R. E.][Os,Ir]4B4-Verbindungen wird diskutiert.
  相似文献   

14.
Number‐ and weight‐average molecular weight of condensation polymers formed in the mixture of primary molecules carrying different species of functional groups A and B are derived by the cascade theory. These functional groups are allowed to form multiple junctions of arbitrary multiplicity k. From the weight average, the gel point condition is found to be given by 1 ? (fw ? 1)(μA,A ? 1) ? (gw ? 1)(μ B,B ? 1) + (fw ? 1)(gw ? 1)Dμ = 0, where fw and gw are average functionality of the primary molecules, μ αβ the average multiplicity of β groups in the junctions where a path of an α‐group enters, and Dμ ≡ (μA,A ? 1)(μ B,B ? 1) ? μ A,Bμ B,A the multiplicity determinant. Possible applications to thermoreversible gelation are suggested. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2413–2421, 2003  相似文献   

15.
Phosphoraneiminato Complexes of Boron. Syntheses and Crystal Structures of [BBr2(NPMe3)]2, [B2Br3(NPiPr3)2]Br, [B2(NPEt3)4]Br2, [B2Br2(NPPh3)3]BBr4 and [{B2(NMe2)2}2(NPEt3)2]Cl The bromoderivatives of the title compounds are prepared from the corresponding silylated phosphoraneimines Me3SiNPR3 and boron tribromide. The boron subcompound [{B2(NMe2)2}2(NPEt3)2]Cl2 derives from Me3SiNPEt3 and B2Cl2(NMe2)2. All complexes are characterized by NMR and IR spectroscopy as well as by crystal structure determinations. [BBr2(NPMe3)]2 (1): Space group P21/n, Z = 2, R = 0.031. Lattice dimensions at ?50°C: a = 723.8, b = 894.2, c = 1305.4 pm, β = 92.35°. 1 forms centrosymmetric molecules in which the boron atoms are linked via μ2-N bridges of the NPMe3? groups of from B2N2 four-membered rings with B? N distances of 149.9 and 150.9 pm. B2Br3(NPiPr3)2]Br (2): Space group P21, Z = 2, R = 0.059. Lattice dimensions at ?80°C: a = 817.6, b = 2198.7, c = 851.5 pm, β = 115.09°. In the cations of 2 the boron atoms are lined via the μ2-N atoms of the NPiPr3? groups to form planar, asymmetric B2N2 four-membered rings with B? N distances of 143 and 156 pm. [B2(NPEt3)4[Br2·4CH2Cl2 (3): Space group C2/c, Z = 4, R = 0.042. Lattice dimensions at ?50°C: a = 1946.1, b = 1180.3, c = 2311.3 pm, β = 101.02°. The structure contains centrosymmetric dications in which both the boron atoms are lined by the N atoms of two of the NPEt3? groups to form a B2N2 four-membered ring with B? N distances of 149.6 pm. The remaining two NPEt3? groups are terminally bonded with very short B? N distances of 133.5 pm. B2Br2(NPPh3)3]BBr4 (4): Space group P1 , Z = 2, R = 0.065. Lattice dimension at ?50°C: a = 1025.7, b = 1496.1, c = 1807.0 pm, α = 85.09°, β = 82.90°, γ = 82.72°. In the cation the boron atoms are lined via the μ2-N atoms of two of the NPPh3? groups to form a nearly planer B2N2 four-membered ring with B? N distances of 149.3-153.1 pm. The third NPPh33 group is terminally connected with teh sp2 hybridized boron atom and with a B? N distance of 134.1 pm along with an almost linear BNP bond angle of 173.6°. [{B2(NMe2)2}2(NPEt2)2]Cl2 · 3CH2Cl2 (5): Space group C2/c, Z = 4, R = 0.098. Lattice dimensions at ?70°C: a = 1557.9, b = 1294.7, c = 2122.9 pm, β = 96.08°. The structure of 4 contains centrosymmetric dications in which two by two B-B dumb-bells are linked via the μ2-N atoms of the two NEPt3? groups to form B4N2 six-membered rings with B? N distances of 150 and 156 pm and B-B distances of 173 pm. The B? N distances of the terminally bonded NMe2? groups correspond to 138 pm double bonds.  相似文献   

16.
A method of finding the activity coefficients of salts, anhydrous or hydrated, in binary solid solutions, described in an earlier paper as it applies to continuous series, has been applied to discontinuous series. The salts must differ with respect to only one ion. The method requires isothermal distribution data for equilibria between liquid (aqueous) and solid solutions in the ternary system consisting of the two salts and water. The following salt pairs were used for illustration: K(I/Br) at 0, 15, 25, 35, and 50°C., (NH4/K)SCN at 0, 30, 60, and 90°C., (K/Tl)C103 at 10°C., and (NH4/K)SO3NH2, (NH4/K)Br, (Mg/Co)SO4-7H2O, and (Mn/Cu) SO4.n H2O-all at 25°C. Two kinds of behavior were noted and treated differently: systems in which the two series have the same, and those in which they have different crystal lattices. For two salts, A and B, which have the same lattice, and whose rational activity coefficients, f A and f B , can be described by 2-suffix Margules equations (regular solutions), lnf A =Bsx B 2 and lnf B =Bsx A 2 to be partially miscible, Bs>2, but this requirement does not apply if the lattices are different. In each series, distribution constants for the equilibria were also determined. Where possible, the calculated activities of the salts or the Gibbs excess energies of the solid solutions were compared with values reported by others who determined them by other methods. All the salt pairs studied show slight or strong positive deviations from ideality.  相似文献   

17.
3H-Phosphaallenes, R−P=C=C(H)C−R’ ( 3 ), are accessible in a multigram scale on a new and facile route and show a fascinating chemical reactivity. BH3(SMe2) and 3 a (R=Mes*, R’=tBu) afforded by hydroboration of the C=C bonds of two phosphaallene molecules an unprecedented borane ( 7 ) with the B atom bound to two P=C double bonds. This compound represents a new FLP based on a B and two P atoms. The increased Lewis acidity of the B atom led to a different reaction course upon treatment of 3 a with H2B-C6F5(SMe2). Hydroboration of a C=C bond of a first phosphaallene is followed in a typical FLP reaction by the coordination of a second phosphaallene molecule via B−C and P−B bond formation to yield a BP2C2 heterocycle ( 8 ). Its B−P bond is short and the B-bound P atom has a planar surrounding. Treatment of 3 a with tBuLi resulted in deprotonation of the β-C atom of the phosphaallene ( 9 ). The Li atom is bound to the P atom as demonstrated by crystal structure determination, quantum chemical calculations and reactions with HCl, Cl-SiMe3 or Cl-PtBu2. The thermally unstable phosphaallene Ph−P=C=C(H)-tBu gave a unique trimeric secondary product by P−P, P−C and C−C bond formation. It contains a P2C4 heterocycle and was isolated as a W(CO)4 complex with two P atoms coordinated to W ( 15 ).  相似文献   

18.
A new coordination mode for the porphyrin ligand is found in [B2O2(BCl3)2(tpClpp)] (tpClpp=dianion of 5,10,15,20-tetra-p-chlorophenylporphyrin; the p-chlorophenyl groups are omitted for clarity in the picture shown on the right). This complex contains a four-membered B2O2 ring in the cavity of the ligand. The two boron atoms are coplanar with the porphyrin molecule, which undergoes an elongation along the B⋅⋅⋅B axis to accomodate the unusual guest.  相似文献   

19.
The reaction of 9,10‐dibromo‐9,10‐dihydro‐9,10‐diboraanthracene (9,10‐dibromo‐DBA, 3 ) with two equivalents of 9‐lithio‐2,6‐ or 9‐lithio‐2,7‐di‐tert‐butylanthracene gave the corresponding 9,10‐dianthryl‐DBAs featuring two ( 4 ) or four ( 5 ) inward‐pointing tert‐butyl groups. Compound 4 exists as two atropisomers, 4 and 4′ , due to hindered rotation about the exocyclic B? C bonds. X‐ray crystallography of 5 suggests that the overall interactions between facing tert‐butyl groups are attractive rather than repulsive. Even in solution, 4 / 4′ and 5 are stable toward air and moisture for several hours. Treatment of 3 with 10‐lithio‐9‐R‐2,7‐di‐tert‐butylanthracenes carrying phenyl (R=Ph), dimesitylboryl (R=Mes2B), or N,N‐di(p‐tolyl)amino (R=Tol2N) groups gave the corresponding 9,10‐dianthryl‐DBA derivatives 9 – 11 in moderate to good yields. In these molecules, all four solubilizing tert‐butyl groups are outward pointing. The solid‐state structures of 4 , 5 , 9 , and 10 reveal twisted conformations about the exocyclic B? C bonds with dihedral angles of 70–90°. A significant electron‐withdrawing character was proven for the Mes2B moiety, but no appreciable +M effect was evident for Tol2N. Compounds 5 , 9 , and 11 show two reversible DBA‐centered reduction waves in the cyclic voltammogram. In the case of 10 , a third reversible redox transition can be assigned to the Mes2B–anthryl substituents. The UV/Vis absorption spectrum of 5 is characterized by a very broad band at λmax=510 nm, attributable to a twisted intramolecular charge‐transfer interaction from the anthryl donors to the DBA acceptor. The corresponding emission band shows pronounced positive solvatochromism (λem=567 nm, C6H12; 680 nm, CH2Cl2) in line with a highly polar excited state. The charge‐transfer bands of 10 and 11 , as well as the emission bands of 9 and 10 , are redshifted relative to those of 5 . The Tol2N derivative 11 is essentially nonfluorescent in solution, but emits bright wine‐red light in the solid state.  相似文献   

20.
Li2AlB5O10     
A new compound, dilithium aluminium pentaborate, Li2Al­B5O10, has been synthesized by solid‐state reaction and its structure determined by single‐crystal X‐ray diffraction. This compound is composed of [B5O10]5? groups linked by AlO4 tetrahedra. The [B5O10]5? group consists of two hexagonal B–­O rings perpendicular to each other connected by tetracoordinated boron. All the B–O rings in this structure can be divided into two groups, with one group approximately parallel and the other perpendicular to the c axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号