首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erasure of the thermoluminescence (TL) signal on detector readout is considered to be a disadvantage of TL dosimetry, as post-readout dose reassessment is then impossible in principle. A method of dose reassessment based on phototransferred thermoluminescence (PTTL) has been developed at the Institute of Nuclear Physics, Polish Academy of Sciences (IFJ PAN) and applied to MTS-N (LiF:Mg,Ti) detectors. We demonstrate the possibility of applying PTTL for dose reassessment in MTS-N TL detectors routinely applied in the dosimetric service at IFJ PAN. Readings of TL detectors exposed to relatively high doses by the customers of our dosimetry service can now be reassessed using our automatic readers. A major obstacle in applying the PTTL method at lower exposures is the presence of residual dose accumulated in LiF:Mg,Ti detectors after many field exposure and readout cycles. Since most of the TL detectors in our service have been already used for a long time (e.g. for over 10 years in the case of some detector batches), we find that our PTTL method of dose reassessment is possible only in detectors which had received doses exceeding 5 mSv.  相似文献   

2.
Lithium fluoride thermoluminescent detectors (TLD) were used for cosmic radiation dosimetry already in early 1960s. Since that time they have been constantly applied in numerous space missions for personal dosimetry, area monitoring, phantom measurements and dosimetry for biological experiments. The relative efficiency of TLDs, defined as the ratio of their response to a given radiation and to a reference radiation, is not constant, but depends on ionization density. This raises a question about the relative efficiency of TLDs exposed to the complex cosmic radiation spectrum encountered in Earth's orbit, which consists of a variety of particles, including heavy ions, the spectrum of which covers an extremely broad energy range. The present work is an attempt to find an answer to this question.The particle energy spectra were calculated for realistic flight conditions of the International Space Station (ISS). The calculation of the Galactic Cosmic Ray (GCR) component was based on the input spectra generated with the DLR model for solar minimum (2009) and solar maximum (2000) conditions. Contributions of trapped protons were estimated based on the AP8 model for solar minimum and maximum taking into account the altitude variations of the ISS. The interactions of the primary particles with the ISS were simulated with GEANT4 using a shielding geometry derived from the mass distribution of the Columbus Laboratory of the ISS and several constant aluminum shieldings. The calculated spectra were convoluted with the experimental data on the relative TL efficiency measured for ions ranging from H to Xe at various particle accelerators for two commonly applied TL-materials, namely LiF:Mg,Ti and LiF:Mg,Cu,P.The results showed the differences in the average TL-efficiency for these two TL-materials. For LiF:Mg,Ti the relative efficiency is within a few percent from unity for any of the analyzed values of shielding, altitude and solar cycle conditions. This means that one can assume cosmic radiation doses measured in Low Earth Orbit (LEO) with LiF:Mg,Ti detectors to be correct within such uncertainty. LiF:Mg,Cu,P underestimates the cosmic radiation doses by more than 15% in all cases. Altitude and solar cycle were found to have a very weak influence on the TL efficiency. In contrast, the influence of shielding thickness is quite significant. The reason for this is a change of contributions of radiation field components: trapped protons dominate at low shielding (97% of dose at 1 g/cm2), but are negligible above 60 g/cm2, as well as changes within GCR spectrum (increase of dose due to lower LET secondaries for higher shielding). Shielding thickness affects both TLD types in different ways: the efficiency of LiF:Mg,Cu,P increases with increasing shielding thickness, while the efficiency of LiF:Mg,Ti shows some fluctuations, with a weak minimum for 60 g/cm2. The response ratio of these TLDs decreases monotonically with the shielding thickness and could be used as an indicator for the average shielding conditions in which the TLDs were exposed.  相似文献   

3.
The radio-photoluminescent (RPL) characteristics of LiF:Mg,Ti (MTS) and LiF:Mg,Cu,P (MCP) thermoluminescent detectors, routinely used in radiation protection dosimetry, were investigated after irradiation with ultra-high electron doses ranging up to 1 MGy. The photoluminescence of both types of LiF detectors was stimulated by a blue light (460 nm) and measured within a spectral window around 530 nm. The RPL dose response was found to be linear up to 50 kGy and sublinear in the range of 50 kGy to 1 MGy for MCP detectors and linear up to 3 kGy and next sublinear in the range from 5 kGy to 1 MGy for MTS detectors. For both type of LiF detectors RPL signal is saturated for doses higher than 100 kGy. The observed differences between MCP and MTS may suggest, that the RPL effect in LiF is not entirely governed by intrinsic defects (F2 and F3+ centers), but dopants may also have a significant influence. Due to the non-destructive character of the RPL measurement, it is suggested to apply combined RPL/TL readouts, what should improve accuracy of high-dose dosimetry.  相似文献   

4.
《Radiation measurements》2007,42(4-5):582-585
The dose response of three LiF TLDs: standard LiF:Mg,Ti (denoted MTS), high-sensitive LiF:Mg,Cu,P (MCP) and a recently developed in Kraków version of LiF:Mg,Ti with modified activator composition (MTT) and increased high-LET response was measured. The TLDs have been exposed to 60Co gamma-rays, up to dose of 10 000 Gy, i.e. beyond saturation dose of the main dosimetric peaks, which corresponds to ca. 1000 Gy. The measured glow-curves were deconvolved into separate peaks with first order kinetic function (using self-developed GlowFit software). The dose response of the main peaks was found to be supralinear for MTS and sublinear for MCP detectors, as expected. The dose response of MTT was found to be even more supralinear than that of MTS. An interesting effect has been observed with regard to glow-curve shape of MCP detectors. Up to a dose of 1 kGy it remains practically unchanged, while for higher doses a strong growth of high-temperature peaks is observed. In the same dose region a decrease of the main peak of MCP with increasing dose is observed, unlike LiF:Mg,Ti detectors.  相似文献   

5.
The TL response of LiF:Mg,Ti microdosimeters and CaSO4:Dy dosimeters were studied for 12 MeV electron beams using PMMA, liquid water and solid water (SW) phantoms. The different phantom materials affect the electron spectrum incident on the detector and it can alter the response of dosimeters to different radiation types, so this fact should be considered in clinical dosimetry. The dosimeters were irradiated with doses ranging from 0.1 up to 5 Gy using a Varian Clinac 2100C linear accelerator of Hospital Israelita Albert Einstein – HIAE using a 10 × 10 cm2 field size and 100 cm source-phantom surface distance, with the dosimeters positioned at the depth of maximum dose. The TL readings were carried out 24 h after irradiation using a Harshaw 3500 TL reader. This paper aims to compare the TL response relative to 60Co of the dosimeters for different phantoms used in radiotherapy dosimetry. CaSO4:Dy dosimeters presented higher TL sensitivity relative to 60Co and intrinsic efficiency than microLiF:Mg,Ti dosimeters for all phantoms.  相似文献   

6.
Two-dimensional (2D) thermoluminescence (TL) dosimetry systems based on LiF:Mg,Cu,P, together with the newly developed, based on CaSO4:Dy, were tested under radiotherapy beams. The detectors were irradiated in a water phantom with 6 MV X-ray beams from linac and read with a dedicated TLD reader. Dose distributions of differently shaped fields and of a full stereotactic plan were measured and compared with planned distributions.Maximum distance-to-agreement (DTA) in the penumbra region was 1 mm for both LiF:Mg,Cu,P and CaSO4:Dy TL sheets, for all the measured fields. Maximum percentage dose difference (DA%) between planned and measured dose value in low dose gradient regions was up to 11% for LiF:Mg,Cu,P TL sheets and 18% for CaSO4:Dy TL sheets. Concerning the full stereotactic plan, the percentage of points with γ-index below 1 is 54.9% for the LiF:Mg,Cu,P-based foil and 96.9% for the CaSO4:Dy TL sheets. Both 2D TL detector types can be considered to be a promising tool for bi-dimensional dose measurements in radiotherapy. Non-homogeneity, presumably due to the TL sheets manufacture, still affects dosimetric distribution and the agreement between planned and measured distributions may depend on the chosen sample.  相似文献   

7.
The widely known LiF TL detectors: LiF:Mg,Ti (MTS-N) and LiF:Mg,Cu,P (MCP-N), were investigated with respect to their OSL properties. It was found that both materials exhibit quite substantial OSL sensitivity. In particular, in the case of LiF:Mg,Cu,P this sensitivity was very high, significantly exceeding that of BeO, the standard OSL dosimetric material. LiF:Mg,Cu,P could be a very promising candidate for application in dosimetry, if not for the fading, which was found to be quite high, reaching nearly 80% loss of the signal within 60 h. The OSL signal intensity shows a correlation with the peak 2 of the TL glow curves indicating that the same trapping sites are responsible for both processes. Peak 2 of LiF:Mg,Ti shows a peculiar property, that blue light stimulation removes only about half of its initial intensity, disregarding the duration of stimulation. This suggests, that this peak may have a composite structure and originates from both light-sensitive and light-insensitive trapping centres.  相似文献   

8.
《Radiation measurements》2000,32(3):205-210
Several new types of miniature (1 and 2 mm diameter) thermoluminescence (TL) detectors were elaborated and tested aiming at dosimetry of liquid [32P] sodium phosphate sources suggested for intravascular brachytherapy. They were prepared using LiF:Mg,Cu,P and LiF:Mg,Ti TL materials in a two-layer technique with the effective thickness below 0.1 mm. Dosimetric measurements were carried out in tissue-equivalent polymethyl methacrylate (PMMA) phantoms, with TL detectors placed at various distances around angioplasty balloons filled with aqueous solution of Na2H32PO4. Of particular interest was the response of detectors placed at shortest distances from the balloon surface. All types of the TL detectors used in trials showed very good spatial resolution and dose readings were consistent for all detector types, even at the steepest parts of the dose–distance curve. In our opinion, the new TL detectors can be recommended for measurements of dose distribution around liquid radiation sources.  相似文献   

9.
10.
This paper gives the results of dosimetry measurements carried out in the Silène reactor at Valduc (France) with neutron and photon dosimeters in mixed neutron and gamma radiation fields, in the frame of a Franco-Russian comparison of dosimeters. Neutron dosimetry was supplied by passive semiconductors, activation detectors and nuclear track detectors. For photon dosimetry, thermoluminescent and passive semiconductor detectors were used. The experiments were located at 3 m from the reactor core, in free air and also at the front and back of a tissue-equivalent phantom. The pulse operating mode of the reactor was used to simulate a criticality accident with solid fissile material, while the free evolution mode simulated a criticality accident in a fissile solution. The photon absorbed dose showed a slight increase on entering the phantom compared to measurements in free air, probably due to backscattering by the phantom. At the rear of the phantom, the neutron kerma was four times lower than on the front, whereas the photon dose was only two times lower. The heterogeneity of dose inside the phantom was far greater for neutrons than for photons.  相似文献   

11.
The dose response of the TL emission spectra of an LiF:Mg,Ti (TLD-100) sample and three LiF:Mg,Ti samples with different impurity concentrations (0–6 ppm Ti and 80–100 ppm Mg) have been measured. At a dose less than 22 Gy the emission spectrum of the TLD-100 sample comprises one emission band at 420 nm. The sample without Ti shows also one emission band but now at 620 nm. The spectra of the other two samples comprises two emission bands at 420 nm and 620 nm of which the intensity of the 420 nm band increases with increasing Ti concentration. The dose response of the glow peaks is different for peaks at different temperatures and emission bands. From these observations it can be concluded than in LiF:Mg,Ti at least some of the traps and luminescent centers are coupled.  相似文献   

12.
Space radiation dosimetry measurements have been made on board the Space Shuttle STS-65 in the Second International Microgravity Laboratory (IML-2). In these measurements, three kinds of detectors were used; one is a newly developed active detector telescope called “Real-time Radiation Monitoring Device (RRMD)” utilizing silicon semi-conductor detectors and others are conventional detectors of thermoluminescence dosimeters (TLDs) and CR-39 plastic track detectors. Using the RRMD detector, the first attempt of real-time monitoring of space radiation has been achieved successfully for a continuous period of 251.3 h, giving the temporal variations of LET distribution, particle count rates, and rates of absorbed dose and dose equivalent. The RRMD results indicate that a clear enhancement of the number of trapped particles is seen at the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent, while some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions for galactic cosmic ray particles (GCRs). Therefore, the main contribution to dose equivalent is seen to be due to GCRs in this low altitude mission (300 km). Also, the dose equivalent rates obtained by TLDs and CR-39 ranged from 146.9 to 165.2 μSv/day and the average quality factors from 1.45 to 1.57 depending on the locations and directions of detectors inside the Space-lab at this highly protected orbit for space radiation with a small inclination (28.5°) and a low altitude (300 km). The LET distributions obtained by two different detectors, RRMD and CR-39, are in good agreement in the region of 15–200 keV/mm and difference of these distributions in the regions of LET < 15 keV/mm and LET > 200 keV/mm can be explained by considering characteristics of CR-39 etched track formation especially for the low LET tracks.  相似文献   

13.
Dosimetry methods outside the target volume are still not well established in radiotherapy. Luminescence detectors due to their small dimensions, very good sensitivity, well known dose and energy response are considered as an interesting approach in verification of doses outside the treated region. The physical processes of thermoluminescence (TL), radiophotoluminescence (RPL) and optically stimulated luminescence (OSL) are very similar and can be described in terms of the energy band model of electron-hole production following irradiation.This work is a review of the main dosimetric characteristics of luminescence detectors which were used in experiments performed by EURADOS Working Group 9 for in-phantom measurements of secondary radiation (scattered and leakage photons). TL LiF:Mg,Ti detectors type MTS-7 (IFJ PAN, Poland), types TLD-100 and TLD-700 (Harshaw), OSL Al2O3:C detectors type nanoDot™ (Landauer Inc.) and RPL rod glass elements type GD-352M (Asahi Techno Glass Coorporation) are described. The main characteristics are discussed, together with the readout and calibration procedures which lead to a determination of absorbed dose to water.All dosimeter types used show very good uniformity, batch reproducibility and homogeneity. For improved accuracy, individual sensitivity correction factors should be applied for TL and OSL dosimeters while for RPL dosimeters there is no need for individual sensitivity corrections.The dose response of all dosimeters is linear for a wide range of doses.The energy response of GD-352M type dosimeters (with Sn filter) used for out-of-field measurements is flat for medium and low energy X-rays.The energy dependence for TLDs is low across the range of photon energies used and the energy correction was neglected. A significant over response of Al2O3:C OSLDs irradiated in kilovoltage photon beams was taken into account. The energy correction factor fen was calculated by using the 2006 PENELOPE Monte Carlo code.With suitable calibration, all dosimeter types are appropriate for out-of-field dose measurements as well as for the in-phantom measurements of radiotherapy MV X-rays beams.  相似文献   

14.
The behaviour of LiF:Mg,Cu,P and LiF:Mg,Ti detectors at ultra-high doses up to 1 MGy, has been investigated. The presence of the ultra-high-temperature peak (450 °C) of reproducible properties was observed in various batches of LiF:Mg,Cu,P, confirming earlier findings. The results indicate that this peak is not an effect of random impurities nor intrinsic effects of LiF, but it is rather connected with the doping.A parameter called ultra-high temperature ratio (UHTR) was defined in order to quantify the observed changes of LiF:Mg,Cu,P glow-curve shape at very high doses and very high temperatures. The use of this parameter allows to determine an absorbed dose in the range from 1 kGy to 1 MGy. This new method of high-dose dosimetry makes LiF:Mg,Cu,P a unique dosimeter, which is capable to cover at least 12 orders of magnitude of dose range: from a microgray to a megagray.  相似文献   

15.
The relative TL efficiency of LiF:Mg, Ti and LiF:Mg, Cu, P was evaluated for several ion beams, ranging from helium to xenon ions. Irradiations were realized at the HIMAC accelerator in Chiba, Japan, partly within the ICCHIBAN intercomparison project. The covered LET range was extending from about 2 keV/μm to 1500 keV/μm.Both tested TLD types exhibited a decrease of relative response with increasing ionization density – stronger for LiF:Mg,Cu,P detectors. The relationship between efficiency and LET was found to follow unique trend lines, as nearly all data points lied within 5% around the fitted empirical functions. Values of TL efficiency measured for various batches of same type TLDs agree within a few percent. The measured relationships between relative TL efficiency and LET will be used in the analysis of data obtained from space dosimetric experiments.  相似文献   

16.
A portable and robust instrument has been developed for the routine assessment of patient exposure to ionizing radiation during radiotherapy treatments. The design principles of hardware and software are described, along with preliminary measurements that illustrate the operation of the system and its capabilities. In this study the authors used radioluminescence (RL) and Optically Stimulated Luminescence (OSL) from Al2O3:C detectors coupled to a PMMA optical fibre to acquire dose in medical dosimetry. The RL/OSL prototype can provide two independent dose estimates from the same in vivo treatment: one integrated dose estimate (OSL) and one real-time dose estimate (RL), which can be compared to one another. The authors first characterized the dose–response to a calibration source (137Cs), analysing the OSL and the RL signal to doses from 0.5 to 3 Gy. Later the percentage dose depth from RL is presented for two gamma (6 and 15 MV) and two electron (6 and 12 MeV) medical beams.  相似文献   

17.
Thermoluminescence (TL) properties of LiF: Mg, Cu, Si phosphor prepared in multicrystalline form using edge defined film fed growth (EFG) technique has been investigated. The effect of preparation route on TL properties and thermal stability has been studied. To improve the TL dosimetry properties, phosphor is subjected to different annealing temperatures ranging from 250 °C to 450 °C. The shape of the glow curve structure and peak temperature remains similar at different annealing temperatures, however peak intensities vary. The consistency in the glow curve structure with annealing temperature elucidate that TL trapping states are stable in nature. Thermal annealing at 300 °C for 10 min gives maximum TL intensity with main dosimetry peak at 209 °C. The TL intensity of the main dosimetry peak is increased by a factor of five as compared to as-grown crystal. The thermal stability of LiF: Mg, Cu, Si is found to be better than LiF: Mg, Cu, P. Trapping parameters are calculated to have an insight study of defect states. A simple glow curve structure, tissue equivalency, thermal stability, low residual signal, linear response and reusability makes LiF: Mg, Cu, Si a suitable phosphor for radiation therapy, radio diagnostics and personnel dosimetry applications.  相似文献   

18.
MOSFET detectors of 1 mVcGy−1 sensitivity were tested for the accuracy of absorbed dose measurements in radiation therapy with the use of photon and electron beams. Before a detector was used in the study, several calibration coefficients were determined to allow for different factors affecting its operation. Then, the detector exposure response was compared with the dose calculated in the anthropomorphic phantom by the Monaco and MasterPlan treatment planning systems. MOSFET detectors were placed inside the phantom during the irradiation. Three different plans for thorax and pelvis areas were studied. The paper presents the differences between planned and MOSFET measured doses delivered to the selected target areas using conventional and IMRT techniques.  相似文献   

19.
Optical absorption spectra of LiF:Mg, Ti thermoluminescence (TL) materials have been determined and used in radiation absorbed dose measurements. Samples were irradiated with different gamma doses (0???1.022 Gy) with dose rate of 12.78 mGy/min and also for different X-ray beam qualities. It was found that there is no significant absorption edge, and the optical absorption increases with increasing gamma doses. Peak intensities of trapping levels showed a linear increase with increasing X-ray or gamma doses. The variation of the optical density with X-ray or gamma doses is energy independent. The TL readings were not affected when the samples were first measured optically. The linearity of the optical density–dose relationship is found to be useful in radiation protection dosimetry.  相似文献   

20.
《Radiation measurements》2002,35(3):255-267
The microdosimetric one-hit detector model has been developed and applied to calculate the dose response, energy response and relative efficiency of thermoluminescent LiF:Mg,Cu,P and CaF2:Tm detectors, and of the free-radical alanine dosimeter, after their exposure to radiation of different quality. The one-hit detector is described by two model parameters: the target diameter, d and the saturation parameter, α. Combining these parameters with microdosimetric distributions in nanometer-size targets calculated using Monte Carlo track structure codes TRION and MOCA-14, it was possible to describe and predict a great variety of experimental data for photon, X-ray, beta-electron, proton, alpha-particles and heavy ion irradiation. Within the framework of this biophysical model of radiation action, some mechanistic insight into the physics of radiation action in solid state detectors can be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号