首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In this work, the effect of immersion in silver nitrate solution on activated carbon fibers (ACFs) was investigated in relation to adsorption behavior and antibacterial activity of ACFs supported with silver (ACF/Ag). The pore and surface properties were studied in terms of BET volumetric measurement with nitrogen adsorption, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The antibacterial activities of ACF/Ag were studied in broth dilution tests against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) from a point of view of water purification. As an experimental result, the silver content of ACF/Ag increased with increasing concentration of silver nitrate. It was found that the micropore structure slightly decreased as the silver nitrate concentration increased. Otherwise, it was revealed that the ACF/Ag possessed a strong antibacterial activity and an inhibitory effect for the growing of E. coli and S. aureus, respectively. Silver content on ACF/Ag decreased rapidly because of rough morphology of silver particles in water erosion.  相似文献   

2.
通过柠檬酸改性提高载银活性炭的抗菌性能   总被引:1,自引:0,他引:1  
通过负载柠檬酸对活性炭进行改性,用N2吸附法测定活性炭的比表面积,用AAS、SEM、XRD测试技术分析了银在活性炭上的吸附和分布,并研究了载银活性炭的抗菌性能。结果表明,负载柠檬酸使活性炭的比表面积下降约24%,但载银后活性炭的比表面积增大。柠檬酸改性为[Ag(NH3)2] 的还原吸附提供更多的活性点,使银的吸附速率加快,吸附量提高约25%,表面的银颗粒变得非常密集,粒径减小,且颗粒均匀,因此抗菌性能显著增强,其中对金黄色葡萄球菌的杀灭效果明显优于对大肠杆菌的,同时对于高分散Ag/C催化剂的制备及银的回收也具有重要的价值。  相似文献   

3.
载银磷酸活化剑麻基活性炭纤维的抗菌性能研究   总被引:5,自引:0,他引:5  
本文利用磷酸化方法,制备各种剑麻基活性炭纤维,并利用活性炭纤维的氧化还原特性及吸附性能,在其上负载金属银,研究并比较了这些载银活性炭纤维对大肠杆菌和金黄色葡萄球菌的杀灭作用,结果表明,磷酸浓度,活化方法,活化时间,纤维的比表面积等因素的均对材料的抗菌性能有一定的影响,磷酸活化的活性炭纤维表现出强的抗菌杀菌能力,高浓度磷酸活化后的纤维抗菌能力有所提高,并且抗菌能力随活化时间的延长而增加,抗菌前后纤维上负载的银未曾大量脱落,经5次抗菌试验后材料仍显示出很强的抗菌能力。  相似文献   

4.
使用浓HNO3和浓H2O2对活性炭进行常温氧化改性,用FTIR和N2吸附法对活性炭进行表面分析,用AAS、SEM、XRD研究银在活性炭表面的吸附和分布特征,并研究了载银活性炭的抗茵性能.结果表明,活性炭经浓HNO3常温改性后,比表面积提高,而经浓H2O2常温改性后,比表面积略有下降,但都使活性炭表面含氧基团增加.改性后,活性炭表面增加的含氧基团为[Ag(NH3)2] 的还原吸附提供更多的活性点,使银的吸附量增大5倍多,银颗粒更加密集,大小更加均一.研究表明,载银活性炭具有明显的抗茵作用,其中对金黄色葡萄球菌的杀灭效果优于对大肠杆菌的杀灭效果,氧化改性使载银活性炭抗茵作用显著增强,其中硝酸改性现象更加明显.  相似文献   

5.
1. INTRODUCTION Microbial pollution will bring about various problems in industry and other vital fields, such as causing decomposing of materials, harming people抯 health. In order to reduce these problems, new antibacterial materials have been demanded. Recently, much attention has been paid to inorganic materials including zinc oxide [1~4]. These inorganic antibacterial materials are now substituting for organic materials to avoid releasing noxious organic molecules harmful to humans;…  相似文献   

6.
李强  郭朝霞 《高分子科学》2017,35(6):713-720
Antibacterial thermoplastic polyurethane(TPU) electrospun fiber mats were prepared by adsorption of Ag nanoparticles(Ag NPs) onto TPU/3-aminopropyltriethoxysilane(APS) co-electrospun fiber mats from silver sol. The use of APS can functionalize TPU fibers with amino groups, facilitating the adsorption of Ag NPs. The effects of p H of silver sol and APS content on Ag NP adsorption and antibacterial activity were investigated. Ag NP adsorption was evidenced by TEM, XPS and TGA. Significant Ag NP adsorption occurred at p H = 3-5. The main driving force for Ag NP adsorption is electrostatic interaction between ―NH3~+ of the fibers and ―COO-derived from the ―COOH group capped on the surfaces of Ag NPs. The antibacterial activity of the Ag NP-decorated TPU/APS fiber mats was investigated using both gram-negative Escherichia coli and gram-positive Bacillus subtilis. The antibacterial rate increases with increasing APS content up to 5% where the antibacterial rates against both types of bacteria are over 99.9%.  相似文献   

7.
A novel in situ core@shell structure consisting of nanoparticles of Ag (Ag Nps) and AgI in agarose matrix (Ag@AgI/agarose) has been synthesized as a hybrid, in order to have an efficient antibacterial agent for repetitive usage with no toxicity. The synthesized core@shell structure is very well characterized by XRD, UV-visible, photoluminescence, and TEM. A detailed antibacterial studies including repetitive cycles are carried out on Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria in saline water, both in dark and on exposure to visible light. The hybrid could be recycled for the antibacterial activity and is nontoxic toward human cervical cancer cells (HeLa cells). The water insoluble Ag@AgI in agarose matrix forms a good coating on quartz, having good mechanical strength. EPR and TEM studies are carried out on the Ag@AgI/agarose and the bacteria, respectively, to elucidate a possible mechanism for killing of the bacteria.  相似文献   

8.
In this paper, grafted polyacrylamide from the surface of glass fibers was prepared by surface initiated atom transfer radical polymerization in order to control the matrix surface structure and properties. The uniform and stable grafted polymer layer was utilized to prepare silver ions complexes, and then the silver ions were reduced by AlLiH4 to form in situ silver nanoparticles. The structure, composition, properties and surface morphology of the modified glass fibers were characterized by X-ray photoelectron spectroscopy, fourier transform infrared spectroscopy, thermo gravimetric analysis and scanning electron microscopy. The antibacterial activities of modified glass fibers against E. coli, B. subtilis and S. cerevisiae had been studied respectively by Shake Flask Method. The results show that the antibacterial ratio of Ag nanoparticles loaded glass fibers is significantly improved than that of Ag+ loaded, and the highest antibacterial ratio is 72.2% against E. coli.  相似文献   

9.
Polyacrylonitrile(PAN)-based activated carbon fiber(PACF) supporting nano-ZnO(PACF /nano-ZnO) was prepared by spin, pretreatment, carbonization, and KOH chemical activation at an activation temperature of 950 ℃ for 40 min. Nano-ZnO content, distribution and antibacterial properties of the PACF/nano-ZnO were studied. The pore structure and surface properties of the PACF/nano-ZnO were studied by Brunauer-Emmett-Teller(BET), N2/77 K isothermal adsorption. The specific surface area increased markedly after the activation process and it was several hundred times greater than that before the process. The PACF/nano-ZnO shows a strong adsorption for Staphylococcus aureus(S. aureus) and Escherichia coli(E. coli) and antibacterial activity against them. As an experimental result, antibacterial properties of PACF/nano-ZnO increased with increasing the concentration of nano-ZnO particles, which suggests it is a promising antibacterial material.  相似文献   

10.
Several kinds of activated carbon fibers, using sisal fiber as precursors, were preparedwith steam activation or with ZnCl2 activation. Zinc or its compounds were dispersed in them. Theantibacterial activities of these activated carbon fibers were determined and compared. The researchresults showed that these sisal based activated carbon fibers supporting zinc have strongerantibacterial activity against Escherichia coli and S. aureus. The antibacterial activity is related tothe precursors, the pyrolysis temperature, and the zinc content. In addition, small quantity of silversupported on zinc-containing ACFs will greatly enhance the antibacterial activity of ACFs.  相似文献   

11.
以四水合氯化亚铁和硝酸银为原料,硼氢化钠为还原剂,氧化石墨烯(GO)为载体,通过原位还原法制备了具有磁分离功能的银/四氧化三铁/还原氧化石墨烯(Ag/Fe_3O_4/rGO)纳米复合抗菌材料.采用X射线粉末衍射仪(XRD)、X射线光电子能谱仪(XPS)、透射电子显微镜(TEM)等对复合材料进行了表征.结果显示,Fe_3O_4和Ag纳米颗粒均匀分布在rGO片层上.复合材料的饱和磁化率(Ms)为40.5 A·m~2·kg·(-1),表明其具有较强的磁性,将其与菌液混合后,在磁场作用下10 min即可吸附沉降完成磁分离.以大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus)为实验菌株,通过琼脂扩散法评价了复合材料的抗菌性能.结果表明,该复合材料具有良好的抗菌效果,对E.coli和S.aureus的抑菌圈直径分别为18 mm和13 mm,最低抑菌浓度值(MIC)分别为50 mg/L和80 mg/L,最低杀菌浓度值(MBC)分别为30 mg/L和50 mg/L.  相似文献   

12.
Graphene oxide (GO) nanosheets impregnated with silver nanoparticles (Ag NPs) were fabricated by the in situ reduction of adsorbed Ag(+) by hydroquinone (HQ) in a citrate buffer solution. Paper-like Ag NP/GO composite materials were fabricated owing to convenient structure characterization and antibacterial tests. The Ag NP/GO composites were characterized by UV-vis spectra, transmission electron microscope, electron diffraction, Raman spectroscopy, and field emission scanning electron microscope coupled with Energy Dispersive Spectrometer. Antibacterial activity was tested using Escherichia coli and Staphylococcus aureus as model strains of Gram negative and Gram positive bacteria, respectively. The as-prepared composites exhibit stronger antibacterial activity against both. The Ag NP/GO composites performed efficiently in bringing down the count of E. coli from 10(6) cfu/mL to zero with 45 mg/L GO in water. The micron-scale GO nanosheets (lateral size) enable them to be easily deposited on porous ceramic membranes during water filtration; making them a promising biocidal material for water disinfection.  相似文献   

13.
采用静电纺丝技术,以联苯四甲酸二酐(BPDA)和4,4'-二氨基二苯醚(ODA)为单体,硝酸银为银源,通过两步法制备含银聚酰亚胺(PI/Ag)纳米纤维.通过X射线衍射(XRD)、透射电子显微镜(TEM)及扫描电子显微镜(SEM)表征了PI/Ag纳米纤维的结构和微观形貌;通过浸渍培养法研究了聚酰亚胺(PI)及PI/Ag纳米纤维的抑菌性能.结果表明,聚酰亚胺基体中存在单质银的立方晶体结构,银粒子在聚酰亚胺基体表面均匀分散,平均粒径为10 nm;PI/Ag纳米纤维对大肠杆菌(E.coli)、金黄色葡萄球菌(S.aureus)和枯草芽孢杆菌(B.subtilis)表现出良好的抑菌效果,最大抑菌率可达99.1%,为聚酰亚胺在耐高温抑菌生物医用材料等领域的应用提供了新的方向.  相似文献   

14.
ABSTRACT: BACKGROUND: The aim of this study is to investigate the functions of polymers and size of nanoparticles on the antibacterial activity of silver bionanocomposites (Ag BNCs). In this research, silver nanoparticles (Ag NPs) were incorporated into biodegradable polymers that are chitosan, gelatin and both polymers via chemical reduction method in solvent in order to produce Ag BNCs. Silver nitrate and sodium borohydride were employed as a metal precursor and reducing agent respectively. On the other hand, chitosan and gelatin were added as a polymeric matrix and stabilizer. The antibacterial activity of different sizes of silver nanoparticles was investigated against Gram-positive and Gram-negative bacteria by the disk diffusion method using Mueller-Hinton Agar. RESULTS: The properties of Ag BNCs were studied as a function of the polymer weight ratio in relation to the use of chitosan and gelatin. The morphology of the Ag BNCs films and the distribution of the Ag NPs were also characterized. The diameters of the Ag NPs were measured and their size is less than 20 nm. The antibacterial trait of silver/chitosan/gelatin bionanocomposites was investigated. The silver ions released from the Ag BNCs and their antibacterial activities were scrutinized. The antibacterial activities of the Ag BNC films were examined against Gram-negative bacteria (E. coli and P. aeruginosa) and Gram-positive (S. aureus and M. luteus) by diffusion method using Muller-Hinton agar. CONCLUSIONS: The antibacterial activity of Ag NPs with size less than 20 nm was demonstrated and showed positive results against Gram-negative and Gram-positive bacteria. The Ag NPs stabilized well in the polymers matrix.  相似文献   

15.
A polyethylenimine (PEI) self-assembled monolayer (SAM) is prepared, capable of complexing silver and copper cations and of anchoring silver nanoparticles, exerting antibacterial activity against Escherichia coli and Staphylococcus aureus. Functionalized glassy surfaces have been fully characterized through spectroscopic techniques (UV-Vis spectroscopy, spectroscopic ellipsometry), atomic force microscopy imaging and quantitative Ag and Cu analysis (ICP optical emission spectroscopy).  相似文献   

16.
Silver‐loading asymmetric cellulose acetate (CA) hollow fiber membrane was spun via the dry jet‐wet spinning technique. The spinning solution was prepared by dissolving AgNO3 and CA in N,N‐dimethylformamide (DMF). The silver ions were reduced in the spinning dope into silver nano‐particles. The morphology of the resulting hollow fibers was examined using a scanning electron microscope and the silver content in the fiber was measured using an inductively coupled plasma atomic emission spectrometer. The antibacterial activities were evaluated. These hollow fibers had a sponge‐like structure and dense inner and outer surfaces. At a 50 k magnification, the pore on the skin layer was not observable, while the nodule size was smaller than 10 nm. The residual silver content of as‐spun hollow fiber was about 60% of the original silver added in the polymer solution. After immersing in water bath for 180 days, the silver content in the bulk of the hollow fibers decreased to 60% and the silver content on the surface reduced to 10%, yet still showed antibacterial activity against Escherichia coli and Staphylococcus aureus. After permeating with water for 5 days, the silver content in the hollow fibers decreased, and did not show antibacterial activity against E. coli and S. aureus. Thus, silver content must be periodically replenished after permeation. The proper range of AgNO3 in the spinning solution for CA hollow fiber should be about 100–1000 ppm. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
High-resolution transmission electron microscopy and spatially resolved electron loss spectroscopy have revealed that a eutectic mixture of AgCl and AgI crystallizes within single walled carbon nanotubes (SWNTs) as metastable AgCl(1-)(x)I(x) 1D solid solution crystals. The incorporated halide crystals form wurzite "tunnel" structures with locally varying Cl:I ratios and reduced Ag coordination.  相似文献   

18.
In the present work, we describe a simple procedure to produce biomimetically coated silver nanoparticles (Ag NPs), based on the postfunctionalization and purification of colloidal silver stabilized by citrate. Two biological capping agents have been used (cysteine Cys and glutathione GSH). The composition of the capped colloids has been ascertained by different techniques and antibacterial tests on GSH-capped Ag NPs have been conducted under physiological conditions, obtaining values of Minimum Inhibitory Concentration (MIC) of 180 and 15 μg/mL for Staphylococcus aureus and Escherichia coli, respectively. The antibacterial activity of these GSH capped NPs can be ascribed to the direct action of metallic silver NPs, rather than to the bulk release of Ag(+).  相似文献   

19.
Surface-enhanced Raman scattering (SERS) was measured for meso-tetrakis(4-sulfonatophenyl)porphine (TSPP) and its metal derivatives Ag(II)TSPP and Pb(II)TSPP adsorbed on AgI colloids, and for TSPP adsorbed on AgCl colloids. The experiments show that TSPP molecules adsorbed on AgI colloids undergo a silver incorporation, while TSPP adsorbed on AgCl colloids are converted into the porphyrin diacid H4TSPP2+ and the metalloporphyrin Ag(II)TSPP. The concentration dependences of SERS spectra for TSPP adsorbed on the two substrates are quite different.  相似文献   

20.
Hybrid nanocomposites based on an dioxidine antimicrobial substance modified with silver were produced by means of cryochemical synthesis. TEM, UV-absorption spectroscopy, X-ray diffraction, and surface analysis based on low-temperature argon adsorption showed the formation of hybrid nanosystems consisting of drug substance particles with a size of 50–300 nm including internal small Ag nanoparticles with a size of 2–40 nm. The obtained hybrid nanosystems showed higher antibacterial activity against E. coli 52, S. aureus 144, and M. cyaneum 98 than did the original dioxidine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号