首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The efficiency of vacuum u.v. for producing single-strand breaks in DNA was determined for wavelengths between 58 and 254 nm (corresponding to photon energies of 21·2 and 4·9 eV, respectively) by using the supertwisted RF-DNA of bacteriophage φX174. The cross-section for production of single-strand breaks increases continuously by about 5 orders of magnitude between 5 and 10 eV photon energy, whereas from 11 to 21 eV the number of strand breaks produced per unit of incident radiation energy is approximately constant. Thus, absorption of a 10-eV photon causes DNA strand breaks with maximum efficiency. In addition, the number of electrons liberated from DNA by photons below 10 eV is one or two orders of magnitude higher than the frequency of strand breaks, demonstrating that in this energy range only a small fraction of the ionizations leads to strand breakage in DNA.  相似文献   

2.
We studied the induction of single-strand breaks in the DNA of plasmid pBR 322 by vacuum-UV radiation above 145 nm in aqueous solutions in relation to the production of OH-radicals in water. The similarity and dissimilarity were examined of the wavelength dependence between the two effects. The maximum of single strand breaks at 150 nm could be explained by the action of OH-radicals derived from direct water photolysis: the maximum at 180 nm remains unexplained. There was no indication that the direct absorption of photon by the DNA molecule plays an important role in the production of single-strand breaks.  相似文献   

3.
The wavelength dependence of the formation of two types of DNA damage, single-strand breaks and base changes, was investigated in the UV region from 150 nm to 254 nm using superhelical closed circular (form I) colicin El DNA with synchrotron radiation. Single-strand breaks were measured by agarose gel electrophoresis as a direct conversion of form I DNA to form II DNA (open circular). Base damages were defined as sensitive sites to a crude extract of endonuclease from Micrococcus luteus. They also were estimated using the same conversion, from form I to form II after the DNA was treated with endonuclease. The fluence-effect relationship could be fitted by a simple exponential function for both types of damage. Action spectra were constructed based on the reciprocal of the 37% fluence. The action spectrum for strand breaks increased rather monotonically over three decades from 254 nm to 150 nm in a logarithmic scale, while that for base damages showed a breaking point at 190 nm, being relatively flat above 190 nm. The characteristics of the action spectra are compared with the absorption spectra of the DNA and its main chain moiety calculated on the basis of data on calf thymus DNA and synthetic polynucleotides. Our main conclusions are (1) that the majority of single-strand breaks were induced by the absorption of photon in the sugar-phosphate group in the vacuum-UV region and (2) that the base changes were induced equally well by absorption in the vacuum-UV and in the far-UV region.  相似文献   

4.
5.
Abstract— Reductone (HOCH2COCHO), a keto-aldehyde produced by thermal degradation of some sugars, at alkaline pHs, blocks the excision repair of DNA lesions in uv-irradiated wild type Escherichia coli. This probably occurs as a result of inhibition of the exonucleolytic activity of DNA polymerase I. In addition, reductone alone induces DNA single-strand breaks. Repair of this damage is mainly dependent on the polA gene products.  相似文献   

6.
Photoproducts in double-stranded DNA induced by 193 nm radiation have been investigated. Double-stranded, supercoiled pBR322 DNA in buffered aqueous solution was exposed to varying fluences of 193 nm radiation from an ArF excimer laser. The quantum yields for formation of cyclobutylpyrimidine dimers, frank strand breaks and alkali labile sites were calculated from the conversion of supercoiled (Form I) DNA to relaxed (Form II) DNA after treatment with Micrococcus luteus dimer-specific endonuclease, no treatment, or treatment with alkali and heat, respectively. The quantum yields were 1.65 (+/- 0.03) X 10(-3) for pyrimidine dimers, 9.4 (+/- 3.2) X 10(-5) for frank strand breaks and 9.6 (+/- 3.6) X 10(-5) for alkali labile sites. The quantum yields for pyrimidine dimers and strand breaks and alkali labile sites were not affected by 10 nM mannitol. The relative quantum yields for these DNA photoproducts induced by 193 nm radiation differed markedly from those produced by 254 nm radiation.  相似文献   

7.
The gene mutation nur has been shown specifically to sensitize Escherichia coli stationary phase cells to inactivation by broad spectrum near-UV (NUV) radiation. In the work reported here, E. coli strains RT1. RT2, RT3, and RT4, carrying the 4 possible combinations of recA1, recA+, nur , and nur+ , were exposed to monochromatic NUV (365 nm). The strains carrying the nur allele (RT1 and RT2) were more sensitive to inactivation by this wavelength and exhibited considerably more single strand break's (SSB's) than the strains carrying the nur+ allele (RT3 and RT4). As predicted, following X-irradiation the strains carrying the recA1 allele (RT1 and RT3) were more sensitive than the recA+ strains (RT2 and RT4). We conclude that the enhanced SSB's observed in strains RT1 and RT2 following monochromatic NUV irradiation correlated with the nur mutation and are unrelated to the recA1 mutation.  相似文献   

8.
Rose bengal photosensitized the formation of frank single-strand breaks (SSBs) in double-stranded, supercoiled pBR322 DNA as measured by neutral agarose electrophoresis. The yield of SSBs followed first order kinetics with respect to light fluence and dye concentration. The efficiency of cleavage was more than 20 times greater in an argon atmosphere than in an oxygen atmosphere. The quantum yield in an air atmosphere was 1.7 (+/- 0.3) X 10(-8). Sodium azide quenched the cleavage more efficiently in an oxygen atmosphere than when the oxygen concentration was reduced. Isopropanol and mannitol were poor quenchers; ribose-5-phosphate and guanosine-5'-monophosphate did not quench the cleavage. Substituting D2O for H2O increased the yield of SSBs in both oxygen and oxygen-depleted atmospheres. The results are consistent with initiation of cleavage by reaction of the triplet state of rose bengal (or a radical derived from it) with DNA. In the presence of oxygen, an additional mechanism is introduced.  相似文献   

9.
Abstract— The induction of single-strand breaks (alkali-labile bonds plus frank breaks) in the DNA of Bacillus subtilis irradiated in vivo by monochromatic UV light at wavelengths from 254 to 434 nm was measured. The spectrum consists of a major far-UV (below 320 nm) component and a minor near-UV shoulder. A mutant deficient in DNA polymerase I accumulates breaks caused by near-UV (above 320 nm) wavelengths faster than the wild-type strain proficient in polymerase I. Measurable breaks in extracted DNA are induced at a higher frequency than those induced in vivo. Anoxia, glycerol, and diazobicyclo (2.2.2.) octane inhibit break formation in extracted DNA. Alkali-labile bonds induced by 365-nm UV radiation are largely (78%) covalent bond chain breaks, the remainder consists of true alkali-labile bonds, probably apurinic and apyrimidinic sites.  相似文献   

10.
The action of high-intensity (10(9)-10(12) W/m2) UV (266 nm) laser radiation pulses (duration ca 10 ns or ca 40 ps) on liquid aqueous solutions of DNA is known to cause not only single- but also two-quantum modification of nucleic bases. The action of hot piperidine on the laser-irradiated DNA results in non-random splitting of polynucleotide chain. Hence, at least some of the modified nucleoside residues are alkali-sensitive lesions (ASLs). The distribution of ASLs along the DNA chain shows that the position of these lesions corresponds with pyrimidines in the PyPy sequences (similar to those formed via single-quantum conversions) as well as with deoxyguanosine residues. The last ASLs result from two-quantum reactions and occur much more efficiently than the direct photo-induced cleavage of the internucleotide (phosphodiester) bond. It has been shown with fragments of plasmids pUC18, pUC19 and pBR322 (total length over 600 base pairs) that the relative efficiency of ASLs at deoxyguanosine sites depends on the primary structure context and can differ by an order of magnitude. The highest efficiency of modification is observed when a purine is 3' neighbour to the 2'-deoxyguanosine, i.e. at 5'-GPu-3' sites. However, considerable variations in the modification efficiency were also found in these sequences.  相似文献   

11.
我们用扩散分子束多光子电离光谱技术研究了丙酮在XeCl准分子激光辐射下的多光子电离和碎裂行为。实验表明丙酮没有产生母体离子峰(m/e=58), 只给出m/e=43和15两个峰, 分别对应于丙酮光解所产生的两个碎片CH_3 CO和CH_3。其离子信号(1)分别与激光强度(Ⅰ)的3和3.6次方成正比。分析表明离子是由中性碎片电离产生的。  相似文献   

12.
The relaxation of rabbit aorta rings induced by low-power laser radiation was investigated in vitro to determine the location of the chromophore(s) responsible for this response and evaluate possible mechanisms. An action spectrum for relaxation was measured on rabbit thoracic aorta rings precontracted with norepinephrine. The decrease in isometric tension was measured during exposure to laser light (351–625 nm) delivered via a fiber optic to a small spot on the adventitial surface. The shortest UV wavelength (351 nm) was 35-fold more effective than 390 nm and 1700-fold more effective than 460 nm. Ultraviolet wavelengths also produced greater maximum relaxation (0.40–0.45) than visible wavelengths (0.20–0.25), suggesting that photovasorelaxation involves more than one chromophore.
The adventitial layer was not necessary for photovasorelaxation, indicating that the light is absorbed by a chromophore in the medial layer. The same degree of relaxation was obtained on rings without adventitia when either one-half of the ring, or a small spot was irradiated indicating that communication between smooth muscle cells spreads a signal from the area illuminated to the entire ring.
The mechanism for photovasorelaxation was investigated using potential inhibitors. N -monomethyl-l-arginine and N -amino-L-arginine, inhibitors of nitric oxide synthase, did not alter photovasorelaxation nor did indomethacin, an inhibitor of cyclooxygenase, and zinc protoporphyrin, an inhibitor of heme oxygenase.  相似文献   

13.
Abstract— An action spectrum for the immediate induction in DNA of single-strand breaks (SSBs, frank breaks plus alkali-labile sites) in human P3 teratoma cells in culture by monochromatic 254-, 270-, 290-, 313-, 334-, 365-, and 405-nm radiation is described. The cells were held at +0.5C during irradiation and were Iysed immediately for alkaline sedimentation analysis following the irradiation treatments. Linear fluence responses were observed over the fluence ranges studied for all energies. Irradiation of the cells in a D2O environment (compared with the normal H2O environment) did not alter the rate of induction of SSBs by 290-nm radiation, whereas the D2O environment enhanced the induction of SSBs by 365- and 405-nm irradiation. Analysis of the relative efficiencies for the induction of SSBs, corrected for quantum efficiency and cellular shielding, revealed a spectrum that coincided closely with nucleic acid absorption below 313 nm. At longer wavelengths, the plot of relative efficiency vs . wavelength contained a minor shoulder in the same wavelength region as that observed in a previously obtained action spectrum for stationary phase Bacillus subtilis cells. Far-UV radiation induced few breaks relative to pyrimidine dimers, whereas in the near-UV region of radiation, SSBs account for a significant proportion of the lesions relative to dimers, with a maximum number of SSBs per lethal event occurring at 365-nm radiation.  相似文献   

14.
Abstract— The proportions of single-strand breaks and alkali-labile bonds produced by UV-light were investigated in covalently-closed circular 5-bromouracil (BrUra)-containing λ-phage DNA. When BrUra DNA was irradiated in 001 M Tris-0–001 M EDTA (pH 8-1) buffer, the D0 was 11-7 J/m2 for single-strand breaks, 2–25 J/m2 for total breaks, and 2–8 J/m2 for alkali-labile bonds. Thus, alkali-labile bonds were the predominant photochemical products. No double-strand breaks were observed after exposure to 7-7 times the D0 for neutral breakage. The photolability measured under both neutral and alkaline conditions was affected by the NaCl concentration in the irradiation solvent, with the greatest resistance to breakage exhibited at the lowest concentrations. The composition of the irradiation buffer also affected sensitivity. Exposure in 1/10 SSC yielded 4-4 (neutral) and 5–7 (alkaline) times the breakage produced in Tris-EDTA.  相似文献   

15.
The induction of single-strand breaks (SSB) and the kinetics of SSB repair were measured in two Chinese hamster ovary cell lines irradiated with monochromatic photons of near-visible radiation (405 nm) and blue light (434 nm). The radiosensitive and UV-A-sensitive mutant line EM9 is known to repair SSB induced by ionizing radiation or 365-nm UV-A more slowly than the parent line AA8. At the 10% survival level, EM9 cells were 1.7- and 1.6-fold more sensitive than AA8 cells to 405 and 434 nm radiation, respectively. This sensitivity was not due to differences in induction of SSB because AA8 and EM9 cells accumulated the same number of initial breaks when irradiated at 0.5 degrees C with either 405 nm (5.9 SSB per MJ/m2) or 434 nm (5.1 SSB per MJ/m2), as measured by alkaline elution. When the cells repaired these SSB at 37 degrees C in full culture medium, biphasic repair kinetics were observed for both cell lines. In both phases of repair, EM9 cells repaired breaks induced by both wavelengths more slowly than did AA8 cells. The t1/2 values for the repair phases for 405-nm-induced SSB were 3.8 and 150 min for EM9, and 1.5 and 52 min for AA8; the corresponding values for repair of 434 nm breaks were 3.7 and 39 min for EM9, and 2.0 and 30 min for AA8. Because of this slower repair, EM9 cells left more SSB unrepaired after 90 min than did AA8 cells for both wavelengths.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Abstract— DNA single-strand breaks were produced in uvrA and uvrB strains of E. coli K-12 after UV (254 nm) irradiation. These breaks appear to be produced both directly by photochemical events, and by a temperature-dependent process. Cyclobutane-type pyrimidine dimers are probably not the photoproducts that lead to the temperature-dependent breaks, since photoreactivation had no detectable effect on the final yield of breaks. The DNA strand breaks appear to be repairable by a process that requires DNA polymerase I and polynucleotide ligase, but not the recA, recB, recF, lexA 101 or uvrD gene products. We hypothesize that these temperature-dependent breaks occur either as a result of breakdown of a thermolabile photoproduct, or as the initial endonucleolytic event of a uvrA , uvrB -independent excision repair process that acts on a UV photoproduct other than the cyclobutane-type pyrimidine dimer.  相似文献   

17.
The induction of single-strand breaks (SSB) by two quantum processes in DNA is well established. We now report that biphotonic processes result in double-strand breaks (DSB) as well. pUC19 and bacteriophage M13 RF DNA were irradiated using an excimer laser (248 nm) at intensities of 10(7), 10(9), 10(10) and 10(11) W/m2 and doses up to 30 kJ/m2. The proportion of DNA as supercoil, open circular, linear and short fragments was determined by gel electrophoresis. Linear molecules were noted at fluences where supercoiled DNA was still present. The random occurrence of independent SSB in proximity to each other on opposite strands (producing linear DNA) implies introduction of numerous SSB per molecule in the sample. If so, supercoiled DNA that has sustained no SSB should not be observed. A model accounting for the amounts of supercoiled, open circular, linear and shorter fragments of DNA due to SSB, DSB and Scissions (opposition of two independently occurring SSB producing an apparent DSB) was developed, our experimental data and those of others were fit to the model, and quantum yields determined for SSB and DSB formation at each intensity. Results showed that high intensity laser radiation caused an increase in the quantum yields for both SSB and DSB formation. The mechanism of DSB formation is unknown, and may be due to simultaneous cleavage of both strands in one biphotonic event or the biased introduction of an SSB opposite a preexisting SSB, requiring two biphotonic events.  相似文献   

18.
Abstract— Dry cysts of Colpoda inflata were irradiated with an argon plasma arc lamp, the output of which simulates space radiation in its wavelength distribution although it is of higher intensity. Rapid evacuation reduced the rate of excystment as well as the percentage excysting; low temperature (near that of liquid nitrogen) had little effect on either measurement. All cysts were therefore irradiated at room temperature in a cell flushed with dry nitrogen. Radiation passed for 1 min through a sapphire filter, with a cutoff at 145 nm, prevented excystment. At smaller doses progressively less damaging effects were observed as judged by both the increase in time required for excystment and the percentage excysted. No dark recovery was observed in dry cysts. Exposure of cysts to radiation passed through a series of filters which progressively remove short ultraviolet wavelengths indicate that it is mainly the quartz-transmitted wavelengths (cutoff 185 nm) which damage the cysts. The presumption is that most of the vacuum-ultraviolet wavelengths are superficially absorbed; their lesser effect is also partially attributable to their lower intensity. Inasmuch as 1 min of argon lamp radiation is equivalent to 24 min in space, it is evident that Colpoda cysts would not long survive a journey in space, had they reached there in viable condition.  相似文献   

19.
Abstract Monochromatic 334-nm radiation delivered under aerobic conditions inactivates the genetic activity (ability to transform auxotrophic recipient cells to nutritional prototrophy) of isolated transforming Bacillus subtilis DNA. The presence of superoxide dismutase (SOD), catalase, and mannitol reduces the 334-nm inactivation. The rate of inactivation of the genetic activity by 334-nm radiation is enhanced fivefold by the sensitizer 2-thiouracil (s2Ura). This enhancement is substantially reversed when the irradiations are performed in the presence of mannitol, and, to a lesser extent, SOD. Catalase slightly reduces the s2Ura enhancement of 334-nm inactivation of transforming activity. Backbone breaks induced in the same DNA by aerobic 334-nm radiation were also enhanced markedly by the presence of s2Ura; this enhancement was reversed by the presence of mannitol and, to a lesser extent, SOD during irradiation. Catalase had no effect upon s2Ura-enhanced, 334-nm-induced SSBs. Whereas DNA breakage may be responsible for a portion of the inactivation of the DNA by the photosensitized reaction between s2-Ura and 334-nm radiation, it is not the only inactivating lesion, because the yield of SSBs per lethal hit per unit length of DNA is not constant for all the irradiation conditions studied. The results support a complex role for active oxygen species in inactivation of transforming activity and DNA breakage by s2Ura-enhanced 334-nm radiation. They are also consistent with the formation of superoxide anion, hydroxyl radical, and possibly also singlet molecular oxygen, generated from ground-state molecular oxygen by reactive s2Ura in both Type I and II reactions.  相似文献   

20.
Abstract— The cleavage of phosphodiester bonds in DNA exposed to high intensity UV laser pulses in aerated aqueous solution has been investigated using a krypton fluoride excimer laser (248 nm) and bacterial plasmid DNA. The dependence of strand breakage on fluence and intensity has been studied in detail and shows that the process is non-linear with respect to intensity. The relationship between the quantum yield for strand breakage and intensity shows that the strand breakage reaction involves two-photon excitation of DNA bases. The quantum yield rises with intensity from a lower value of 7 times 10-5 until a maximum value of 4.5 times 10-4 is attained at intensities of 1011 W m-2 and above. This value is approximately fifty-fold higher than the quantum yield for strand breakage induced by exposure to low density UV irradiation (254 nm, 12 W m-2). DNA sequencing experiments have shown that strand breakage occurs by the specific cleavage of the phosphodiester bond which lies immediately 3' to guanine residues in the DNA, leaving some alkali-labile remnant attached to the terminal phosphate. A mechanism for DNA strand breakage which involves the generation of guanine radical cations is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号