首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A graph is chordal if every cycle of length strictly greater than three has a chord. A necessary and sufficient condition is given for all powers of a chordal graph to be chordal. In addition, it is shown that for connected chordal graphs the center (the set of all vertices with minimum eccentricity) always induces a connected subgraph. A relationship between the radius and diameter of chordal graphs is also established.  相似文献   

2.
图G的弦图扩充问题包含两个问题:图G的最小填充问题和树宽问题,分别表示为f(G)和TW(G);图G的区间图扩充问题也包含两个问题:侧廓问题和路宽问题,分别表示为P(G)和PW(G).对一般图而言,它们都是NP-困难问题.一些特殊图类的填充数、树宽、侧廓问题和路宽具体值已被求出.主要研究树T的线图L(T)的弦图扩充问题;其次涉及到了两类特殊树—毛虫树和直径为4的树的线图的区间图扩充问题.  相似文献   

3.
A spanning tree T of a graph G is said to be a treet-spanner if the distance between any two vertices in T is at most t times their distance in G. A graph that has a tree t-spanner is called a treet-spanner admissible graph. The problem of deciding whether a graph is tree t-spanner admissible is NP-complete for any fixed t≥4 and is linearly solvable for t≤2. The case t=3 still remains open. A chordal graph is called a 2-sep chordal graph if all of its minimal ab vertex separators for every pair of non-adjacent vertices a and b are of size two. It is known that not all 2-sep chordal graphs admit tree 3-spanners. This paper presents a structural characterization and a linear time recognition algorithm of tree 3-spanner admissible 2-sep chordal graphs. Finally, a linear time algorithm to construct a tree 3-spanner of a tree 3-spanner admissible 2-sep chordal graph is proposed.  相似文献   

4.
Leaf powers are a graph class which has been introduced to model the problem of reconstructing phylogenetic trees. A graph G=(V,E) is called k-leaf power if it admits a k-leaf root, i.e., a tree T with leaves V such that uv is an edge in G if and only if the distance between u and v in T is at most k. Moroever, a graph is simply called leaf power if it is a k-leaf power for some kN. This paper characterizes leaf powers in terms of their relation to several other known graph classes. It also addresses the problem of deciding whether a given graph is a k-leaf power.We show that the class of leaf powers coincides with fixed tolerance NeST graphs, a well-known graph class with absolutely different motivations. After this, we provide the largest currently known proper subclass of leaf powers, i.e, the class of rooted directed path graphs.Subsequently, we study the leaf rank problem, the algorithmic challenge of determining the minimum k for which a given graph is a k-leaf power. Firstly, we give a lower bound on the leaf rank of a graph in terms of the complexity of its separators. Secondly, we use this measure to show that the leaf rank is unbounded on both the class of ptolemaic and the class of unit interval graphs. Finally, we provide efficient algorithms to compute 2|V|-leaf roots for given ptolemaic or (unit) interval graphs G=(V,E).  相似文献   

5.
Nishimura et al. [On graph powers for leaf-labeled trees, J. Algorithms 42 (2002) 69-108] define a k-leaf root of a graph G=(VG,EG) as a tree T=(VT,ET) such that the vertices of G are exactly the leaves of T and two vertices in VG are adjacent in G if and only if their distance in T is at most k. Solving a problem posed by Niedermeier [Personal communication, May 2004] we give a structural characterization of the graphs that have a 4-leaf root. Furthermore, we show that the graphs that have a 3-leaf root are essentially the trees, which simplifies a characterization due to Dom et al. [Error compensation in leaf power problems, Algorithmica 44 (2006) 363-381. (A preliminary version appeared under the title “Error compensation in leaf root problems”, in: Proceedings of the 15th Annual International Symposium on Algorithms and Computation (ISAAC 2004), Lecture Notes in Computer Science, vol. 3341, pp. 389-401)] and also a related recognition algorithm due to Nishimura et al. [On graph powers for leaf-labeled trees, J. Algorithms 42 (2002) 69-108].  相似文献   

6.
Chordal graphs were characterized as those graphs having a tree, called clique tree, whose vertices are the cliques of the graph and for every vertex in the graph, the set of cliques that contain it form a subtree of clique tree. In this work, we study the relationship between the clique trees of a chordal graph and its subgraphs. We will prove that clique trees can be described locally and all clique trees of a graph can be obtained from clique trees of subgraphs. In particular, we study the leafage of chordal graphs, that is the minimum number of leaves among the clique trees of the graph. It is known that interval graphs are chordal graphs without 3-asteroidals. We will prove a generalization of this result using the framework developed in the present article. We prove that in a clique tree that realizes the leafage, for every vertex of degree at least 3, and every choice of 3 branches incident to it, there is a 3asteroidal in these branches.  相似文献   

7.
A directed path graph is the intersection graph of a family of directed subpaths of a directed tree. A rooted directed path graph is the intersection graph of a family of directed subpaths of a rooted tree. Clearly, rooted directed path graphs are directed path graphs. Several characterizations are known for directed path graphs: one by forbidden induced subgraphs and one by forbidden asteroids. It is an open problem to find such characterizations for rooted directed path graphs. With the purpose of proving knowledge in this direction, we show in this paper properties of directed path models that can not be rooted for chordal graphs with any leafage and with leafage four. Therefore, we prove that for leafage four directed path graphs minimally non rooted directed path graphs have a unique asteroidal quadruple, and can be characterized by the presence of certain type of asteroidal quadruples.  相似文献   

8.
A graph G is a k-leaf power if there is a tree T such that the vertices of G are the leaves of T and two vertices are adjacent in G if and only if their distance in T is at most k. In this situation T is called a k-leaf root of G. Motivated by the search for underlying phylogenetic trees, the notion of a k-leaf power was introduced and studied by Nishimura, Ragde and Thilikos and subsequently in various other papers. While the structure of 3- and 4-leaf powers is well understood, for k≥5 the characterization of k-leaf powers remains a challenging open problem.In the present paper, we give a forbidden induced subgraph characterization of distance-hereditary 5-leaf powers. Our result generalizes known characterization results on 3-leaf powers since these are distance-hereditary 5-leaf powers.  相似文献   

9.
Fatemeh Mohammadi 《代数通讯》2013,41(10):3753-3764
In this article, Cohen–Macaulay chordal graphs and generalized star graphs are studied to show that all powers of the vertex cover ideal of such graphs have linear quotients. Moreover, it is shown that the Alexander dual of the clique complex of any chordal graph is vertex decomposable.  相似文献   

10.
从图论观点讲,最小填充问题就是在一个图G中添加边集F,使得图G的母图G F是一个弦图而且所添边的边数| F|是最小的,其中最小值| F|称为图G的填充数,表示为f( G) .对一般图来说,最小填充问题是NP-困难的,但是对一些特殊图类来说,这个问题是在多项式时间内可解的.本文给出了弦图的补图-G的填充数f(-G) .  相似文献   

11.
We study the problem of adding an inclusion minimal set of edges to a given arbitrary graph so that the resulting graph is a split graph, called a minimal split completion of the input graph. Minimal completions of arbitrary graphs into chordal and interval graphs have been studied previously, and new results have been added recently. We extend these previous results to split graphs by giving a linear-time algorithm for computing minimal split completions. We also give two characterizations of minimal split completions, which lead to a linear time algorithm for extracting a minimal split completion from any given split completion.We prove new properties of split graph that are both useful for our algorithms and interesting on their own. First, we present a new way of partitioning the vertices of a split graph uniquely into three subsets. Second, we prove that split graphs have the following property: given two split graphs on the same vertex set where one is a subgraph of the other, there is a sequence of edges that can be removed from the larger to obtain the smaller such that after each edge removal the modified graph is split.  相似文献   

12.
A subset of vertices in a graph is called a dissociation set if it induces a subgraph with a vertex degree of at most 1. The maximum dissociation set problem, i.e., the problem of finding a dissociation set of maximum size in a given graph is known to be NP-hard for bipartite graphs. We show that the maximum dissociation set problem is NP-hard for planar line graphs of planar bipartite graphs. In addition, we describe several polynomially solvable cases for the problem under consideration. One of them deals with the subclass of the so-called chair-free graphs. Furthermore, the related problem of finding a maximal (by inclusion) dissociation set of minimum size in a given graph is studied, and NP-hardness results for this problem, namely for weakly chordal and bipartite graphs, are derived. Finally, we provide inapproximability results for the dissociation set problems mentioned above.  相似文献   

13.
An intersection representation of a graph is a function gf mapping vertices to sets such that for any uv, u is adjacent to v iff gf(u) ∩ gf(v) ≠ . The intersection class defined by a set of sets ∑ is the set of all graphs having an intersection representation using sets from ∑. Interval graphs and chordal graphs are well-studied examples of intersection classes.

This paper introduces the notion of completeness for intersection classes. That is, determining precisely what restrictions can be made on the allowable sets without losing the power to represent any graph in the intersection class. The solution to this problem is presented for the chordal graphs.  相似文献   


14.
A connected matching in a graph is a collection of edges that are pairwise disjoint but joined by another edge of the graph. Motivated by applications to Hadwiger’s conjecture, Plummer, Stiebitz, and Toft (2003) introduced connected matchings and proved that, given a positive integer k, determining whether a graph has a connected matching of size at least k is NP-complete. Cameron (2003) proved that this problem remains NP-complete on bipartite graphs, but can be solved in polynomial-time on chordal graphs. We present a polynomial-time algorithm that finds a maximum connected matching in a chordal bipartite graph. This includes a novel edge-without-vertex-elimination ordering of independent interest. We give several applications of the algorithm, including computing the Hadwiger number of a chordal bipartite graph, solving the unit-time bipartite margin-shop scheduling problem in the case in which the bipartite complement of the precedence graph is chordal bipartite, and determining–in a totally balanced binary matrix–the largest size of a square sub-matrix that is permutation equivalent to a matrix with all zero entries above the main diagonal.  相似文献   

15.
The rectilinear Steiner tree problem is to find a minimum-length rectilinear interconnection of a set of points in the plane. A reduction from the rectilinear Steiner tree problem to the graph Steiner tree problem allows the use of exact algorithms for the graph Steiner tree problem to solve the rectilinear problem. Furthermore, a number of more direct, geometric algorithms have been devised for computing optimal rectilinear Steiner trees. This paper surveys algorithms for computing optimal rectilinear Steiner trees and presents experimental results comparing nine of them: graph Steiner tree algorithms due to Beasley, Bern, Dreyfus and Wagner, Hakimi, and Shore, Foulds, and Gibbons and geometric algorithms due to Ganley and Cohoon, Salowe and Warme, and Thomborson, Alpern, and Carter.  相似文献   

16.
Any given graph can be embedded in a chordal graph by adding edges, and the resulting chordal graph is called a triangulation of the input graph. In this paper we study minimal triangulations, which are the result of adding an inclusion minimal set of edges to produce a triangulation. This topic was first studied from the standpoint of sparse matrices and vertex elimination in graphs. Today we know that minimal triangulations are closely related to minimal separators of the input graph. Since the first papers presenting minimal triangulation algorithms appeared in 1976, several characterizations of minimal triangulations have been proved, and a variety of algorithms exist for computing minimal triangulations of both general and restricted graph classes. This survey presents and ties together these results in a unified modern notation, keeping an emphasis on the algorithms.  相似文献   

17.
An independent packing of triangles is a set of pairwise disjoint triangles, no two of which are joined by an edge. A triangle bramble is a set of triangles, every pair of which intersect or are joined by an edge. More generally, I consider independent packings and brambles of any specified connected graphs, not just triangles. I give a min-max theorem for the maximum number of graphs in an independent packing of any family of connected graphs in a chordal graph, and a dual min-max theorem for the maximum number of graphs in a bramble in a chordal graph.  相似文献   

18.
Let P be a collection of nontrivial simple paths on a host tree T. The edge intersection graph of P, denoted by EPT(P), has vertex set that corresponds to the members of P, and two vertices are joined by an edge if and only if the corresponding members of P share at least one common edge in T. An undirected graph G is called an edge intersection graph of paths in a tree if G=EPT(P) for some P and T. The EPT graphs are useful in network applications. Scheduling undirected calls in a tree network or assigning wavelengths to virtual connections in an optical tree network are equivalent to coloring its EPT graph.An undirected graph G is chordal if every cycle in G of length greater than 3 possesses a chord. Chordal graphs correspond to vertex intersection graphs of subtrees on a tree. An undirected graph G is weakly chordal if every cycle of length greater than 4 in G and in its complement possesses a chord. It is known that the EPT graphs restricted to host trees of vertex degree 3 are precisely the chordal EPT graphs. We prove a new analogous result that weakly chordal EPT graphs are precisely the EPT graphs with host tree restricted to degree 4. Moreover, this provides an algorithm to reduce a given EPT representation of a weakly chordal EPT graph to an EPT representation on a degree 4 tree. Finally, we raise a number of intriguing open questions regarding related families of graphs.  相似文献   

19.
For a chordal graph G=(V,E), we study the problem of whether a new vertex uV and a given set of edges between u and vertices in V can be added to G so that the resulting graph remains chordal. We show how to resolve this efficiently, and at the same time, if the answer is no, specify a maximal subset of the proposed edges that can be added along with u, or conversely, a minimal set of extra edges that can be added in addition to the given set, so that the resulting graph is chordal. In order to do this, we give a new characterization of chordal graphs and, for each potential new edge uv, a characterization of the set of edges incident to u that also must be added to G along with uv. We propose a data structure that can compute and add each such set in O(n) time. Based on these results, we present an algorithm that computes both a minimal triangulation and a maximal chordal subgraph of an arbitrary input graph in O(nm) time, using a totally new vertex incremental approach. In contrast to previous algorithms, our process is on-line in that each new vertex is added without reconsidering any choice made at previous steps, and without requiring any knowledge of the vertices that might be added subsequently.  相似文献   

20.
A phylogeny is a tree that relates taxonomic units, based on their similarity over a set of characters. The problem of finding a phylogeny with the minimum number of evolutionary steps (the so-called parsimony criterion) is one of the main problems in comparative biology. In this work, we study different heuristic approaches to the phylogeny problem under the parsimony criterion. New algorithms based on metaheuristics are also proposed. All heuristics are implemented and compared under the same framework, leading to consistent and thorough comparative results. Computational results are reported for benchmark instances from the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号