首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of added unmodified amylopectin starch, modified amylopectin starch and amylose starch on the formation and properties of emulsions (4 wt.% corn oil) made with an extensively hydrolysed commercial whey protein (WPH) product under a range of conditions were examined. The rate of coalescence was calculated based on the changes in the droplet size of the emulsions during storage at 20 degrees C. The rates of creaming and coalescence in emulsions containing amylopectin starches were enhanced with increasing concentration of the starches during storage for up to 7 days. At a given starch concentration, the rate of coalescence was higher in the emulsions containing modified amylopectin starch than in those containing unmodified amylopectin starch, whereas it was lowest in the emulsions containing amylose starch. All emulsions containing unmodified and modified amylopectin starches showed flocculation of oil droplets by a depletion mechanism. However, flocculation was not observed in the emulsions containing amylose starch. The extent of flocculation was considered to correlate with the rate of coalescence of oil droplets. The different rates of coalescence could be explained on the basis of the strength of the depletion potential, which was dependent on the molecular weight and the radius of gyration of the starches. At high levels of starch addition (>1.5%), the rate of coalescence decreased gradually, apparently because of the high viscosity of the aqueous phase caused by the starch.  相似文献   

2.
The influence of surface and thermal denaturation of adsorbed beta-lactoglobulin (beta-Lg) on the flocculation of hydrocarbon oil droplets was measured at pH 3 and compared with that at pH 7. Oil-in-water emulsions (5 wt % n-hexadecane, 0.5 wt % beta-Lg, pH 3.0) were prepared that contained different levels of salt (0-150 mM NaCl) added immediately after homogenization. The mean particle diameter (d43) and particle size distribution of diluted emulsions were measured by laser diffraction when they were either (i) stored at 30 degrees C for 48 h or (ii) subjected to different thermal treatments (30-95 degrees C for 20 min). In the absence of salt, little droplet flocculation was observed at pH 3 or 7 because of the strong electrostatic repulsion between the droplets. In the presence of 150 mM NaCl, a progressive increase in mean particle size with time was observed in pH 7 emulsions during storage at 30 degrees C, but no significant change in mean particle diameter with time (d43 approximately 1.4 +/- 0.2 microm) was observed in the pH 3 emulsions. Droplet aggregation became more extensive in pH 7 emulsions containing salt (added before thermal processing) when they were heated above 70 degrees C, which was attributed to thermal denaturation of adsorbed beta-Lg leading to interdroplet disulfide bond formation. In contrast, the mean particle size decreased and the creaming stability improved when pH 3 emulsions were heated above 70 degrees C. These results suggest that the droplets in the pH 3 emulsions were weakly flocculated at temperatures below the thermal denaturation temperature of beta-Lg (T < 70 degrees C) but that flocs did not form so readily above this temperature, which was attributed to a reduction in droplet surface hydrophobicity due to protein conformational changes. The most likely explanation for the difference in behavior of the emulsions is that disulfide bond formation occurs much more readily at pH 7 than at pH 3.  相似文献   

3.
Transitions in structure of sodium caseinate stabilized emulsions were studied using conventional rheometry as well as diffusing wave spectroscopy (DWS). Structural differences were induced by different amounts of stabilizer, and transitions in structure were induced by acidification. Special attention was given to the sol-gel transition. In this study the criterion of the sol-gel transition being frequency independent was verified for emulsions using DWS. It was shown that this sol-gel transition did not correspond to the so-called ergodic-nonergodic transition. Differences, as a function of the pH, were found for emulsions containing different amounts of stabilizer. The emulsion droplets in an emulsion without extra stabilizer formed a continuous network upon acidification, while the droplets in emulsions with an excess of stabilizer formed a network of oil droplets at neutral pH. Upon acidification of the latter one, the initial network of oil droplets fell apart, and eventually a network of sodium caseinate, in which the oil droplets were embedded, was formed. This caused the appearance of two sol-gel transitions. The breaking of the initial network as well as the network formation of sodium caseinate in time was observed by DWS.  相似文献   

4.
The influence of environmental conditions (pH, NaCl, CaCl2, and temperature) on the properties and stability of oil-in-water (O/W) emulsions containing oil droplets surrounded by one-, two-, or three-layer interfacial membranes has been investigated. Three oil-in-water emulsions were prepared with the same droplet concentration and buffer (5 wt % corn oil, 5 mM phosphate buffer, pH 6) but with different biopolymers: (i) primary emulsion: 0.5 wt % beta-Lg; (ii) secondary emulsion: 0.5 wt % beta-Lg, 0.1 wt % iota-carrageenan; (iii) tertiary emulsion: 0.5 wt % beta-Lg, 0.1 wt % iota-carrageenan, 0-2 wt % gelatin. The secondary and tertiary emulsions were prepared by electrostatic deposition of the charged biopolymers onto the surfaces of the oil droplets so as to form two- and three-layer interfacial membranes, respectively. The stability of the emulsions to pH (3-8), sodium chloride (0-500 mM), calcium chloride (0-12 mM), and thermal processing (30-90 degrees C) was determined. We found that multilayer emulsions had better stability to droplet aggregation than single-layer emulsions under certain environmental conditions and that one or more of the biopolymer layers could be made to desorb from the droplet surfaces in response to specific environmental changes (e.g., high salt or high temperature). These results suggest that the interfacial engineering technology used in this study could lead to the creation of food emulsions with improved stability to environmental stresses or to emulsions with triggered release characteristics.  相似文献   

5.
Oil-in-water emulsions (20% soya oil, 1% protein) have been prepared containing lysozyme or isolates of -lactalbumin and β-lactoglobulin from whey protein. The structural characteristics of these proteins adsorbed at an oil/water interface were determined by following their thermal transitions using differential scanning microcalorimetry. Thermograms of the proteins in the adsorbed state differed markedly from the corresponding transitions seen for the proteins in solution. This suggests that the proteins underwent substantial changes in secondary and tertiary structure upon adsorption. In general, for all the proteins studied, a net decrease in the total energy absorbed during denaturation was found when the proteins were in an adsorbed state. Both lysozyme and -lactalbumin were in part “surface denatured”, and they showed a certain degree of reversibility between solution and the adsorbed state. β-Lactoglobulin showed the highest degree of denaturation upon adsorption and the conformational change was irreversible.  相似文献   

6.
Emulsions stabilized through the adsorption of colloidal particles at the liquid-liquid interface have long been used and investigated in a number of different applications. The interfacial adsorption of particles can be induced by adjusting the particle wetting behavior in the liquid media. Here, we report a new approach to prepare stable oil-in-water emulsions by tailoring the wetting behavior of colloidal particles in water using short amphiphilic molecules. We illustrate the method using hydrophilic metal oxide particles initially dispersed in the aqueous phase. The wettability of such particles in water is reduced by an in situ surface hydrophobization that induces particle adsorption at oil-water interfaces. We evaluate the conditions required for particle adsorption at the liquid-liquid interface and discuss the effect of the emulsion initial composition on the final microstructure of oil-water mixtures containing high concentrations of alumina particles modified with short carboxylic acids. This new approach for emulsion preparation can be easily applied to a variety of other metal oxide particles.  相似文献   

7.
The influence of protein concentration and order of addition relative to homogenization (before or after) on the extent of droplet flocculation in oil-in-water emulsions stabilized by a globular protein was examined using laser diffraction. n-Hexadecane (10 wt%) oil-in-water emulsions (pH 7, 150 mM NaCl) stabilized by beta-lactoglobulin (beta-Lg) were prepared by three methods: (1) 4 mg/mL beta-Lg added before homogenization; (2)10 mg/mL beta-Lg added before homogenization; (3) 4 mg/mL beta-Lg added before homogenization and 6 mg/mL beta-Lg added after homogenization. Emulsion 1 contained little nonadsorbed protein (<3%) and underwent extremely rapid and extensive droplet flocculation immediately after homogenization. Emulsion 2 contained a significant fraction of nonadsorbed beta-Lg and exhibited relatively slow droplet flocculation for some hours after homogenization. Measurements on Emulsion 3 showed that the extremely rapid particle growth observed in Emulsion 1 could be arrested by adding native beta-Lg immediately after homogenization. The extent of particle growth in the three types of emulsions was highly dependent on the time that the salt was added to the emulsions, i.e., after 0 or 24 h aging. We postulate that the observed differences are due to changes in droplet surface hydrophobicity caused by differences in the packing or conformation of adsorbed proteins. Our data suggest that history effects have a strong influence on the flocculation stability of protein-stabilized emulsions, which has important implications for the formulation and production of protein stabilized oil-in-water emulsions.  相似文献   

8.
The stability of oil-in-water emulsions prepared using dextran, a natural polysaccharide, hydrophobically substituted with phenoxy groups, was studied. The evolution of the emulsion droplet size was investigated as a function of polymer concentration (Cp=0.2 to 1% w/w in a water phase) and the degree of phenoxy substitution (tau=4.2 to 15.7%). For the highest tau values, emulsions, which presented submicrometer droplets, were stable over more than 4 months at room temperature. The most substituted polymers clearly showed a better efficiency to lower the surface tension at the oil/water interface. DexP did not induce real viscosification of the continuous phase. The linearity of the particle volume variation with time, and the invariability of the volume distribution function, proved that Ostwald ripening was the main destabilization mechanism of the phenoxy dextran emulsions. The nature of the oil dispersed phase drastically affected the behavior of emulsions. While the emulsions prepared with n-dodecane presented a particle growth with time, only few size variations occurred when n-hexadecane was used. Furthermore, small ratios of n-hexadecane in n-dodecane phase reduced the particle growth due to the lower solubility and lower diffusion coefficient in water of n-hexadecane, which acted as a ripening inhibitor.  相似文献   

9.
Like many other emulsifiers, whey protein concentrates stabilize oil-in-water emulsions. However, the emulsifying capacity of whey proteins is affected by several factors, e. g., type of homogenizer, degree of homogenization, protein concentration, oil volume fraction, pH and ionic strength of the aqueous phase. For the present study, oilin-water emulsions were made by homogenizing known amounts of whey protein concentrate with a vegetable oil (i. e. grapeseed oil) at different pH. The emulsifying properties of whey proteins are expressed as a function of the particle size and size distribution of oil droplets as measured by light scattering, and of the surface charge density derived from the electrophoretic mobility.The whey protein concentrate was shown to have an isoelectric point at pH 4.4. Near this pH value, the oil-in-water emulsions exhibited poor stability as expected from the low surface coverage.  相似文献   

10.
Thermodynamic treatment of thin liquid films in Part III of this series was applied to foam films stabilized by sodium dodecyl sulfate. Miscibility of sodium chloride and sodium dodecyl sulfate in the adsorbed films at the film surfaces and transition between the black films were studied by measuring film thickness and contact angle. A discontinuous change in the thickness and a break on the contact angle vs. concentration curve appeared at the transition. Judging from the phase diagram of adsorption, sodium chloride and sodium dodecyl sulfate are a little miscible in the adsorbed films. The miscibility was ascribed to specific interaction between sodium ion and dodecyl sulfate ion in the adsorbed films. The miscibility in an adsorbed film was compared between the film surface and meniscus and between the common black and Newton black films.  相似文献   

11.
Oil-in-water emulsions of slightly soluble oils such as tetralin prepared by high-pressure homogenization and stabilized by sodium dodecyl sulfate undergo depletion flocculation induced by an initially polydisperse droplet size distribution. The smaller droplets flocculate the larger ones; the flocculation can be reversed by gentle sonication. After aging, the flocs disappear because the smaller droplets dissolve through Ostwald ripening. These effects were observed by electroacoustic measurements, supplemented by light scattering.  相似文献   

12.
The influence of protein concentration and order of addition relative to homogenization (before or after) on the extent of droplet flocculation in heat-treated oil-in-water emulsions stabilized by a globular protein were examined using laser diffraction. n-Hexadecane (10 wt%) oil-in-water emulsions (pH 7, 150 mM NaCl) stabilized by beta-lactoglobulin (beta-Lg) were prepared by three methods: (1) 4 mg/mL beta-Lg added before homogenization; (2) 4 mg/mL beta-Lg added before homogenization and 6 mg/mL beta-Lg added after homogenization; (3) 10 mg/mL beta-Lg added before homogenization. The emulsions were then subjected to various isothermal heat treatments (30-95 degrees C for 20 min), with the 150 mM NaCl being added either before or after heating. Emulsion 1 contained little nonadsorbed protein and exhibited extensive droplet aggregation at all temperatures, which was attributed to the fact that the droplets had a high surface hydrophobicity, e.g., due to exposed oil or extensive protein surface denaturation. Emulsions 2 and 3 contained a significant fraction of nonadsorbed beta-Lg. When the NaCl was added before heating, these emulsions were relatively stable to droplet flocculation below a critical holding temperature (75 and 60 degrees C, respectively) but showed extensive flocculation above this temperature. The stability at low temperatures was attributed to the droplets having a relatively low surface hydrophobicity, e.g., due to complete saturation of the droplet surface with protein or due to more limited surface denaturation. The instability at high temperatures was attributed to thermal denaturation of the adsorbed and nonadsorbed proteins leading to increased hydrophobic interactions between droplets. When the salt was added to Emulsions 2 and 3 after heating, little droplet flocculation was observed at high temperatures, which was attributed to the dominance of intra-membrane over inter-membrane protein-protein interactions. Our data suggests that protein concentration and order of addition have a strong influence on the flocculation stability of protein-stabilized emulsions, which has important implications for the formulation and production of many emulsion-based products.  相似文献   

13.
A method to measure distribution coefficients (P) of electroactive species in situ in turbid oil-in-water emulsions is demonstrated using four p-phenylenediamines (PPD) in oil-in-aqueous-gelatin emulsions of six oils at 40°C. The PPD examined represent a series in β-X-ethyl substitution (4-amino-3-methyl-N-ethyl-N-(β-X-ethyl)aniline) where X = H (2), OH (3), methylsulfonamide (4), and methoxyethyl (5), respectively, for PPD 2–5. The oils examined include di-n-butyl phthalate (DBP), N,N-diethyldodecanamide (DEDA), 1-octanol (OCA), 1-undecanol (UNA), tri-n-hexyl phosphate (THP), and dodecane (DOD). The rotating platinum disk electrode (RPDE) is used as a voltammetric probe of PPD concentration in the aqueous-gelatin phase of the emulsions. Distribution coefficients in macroscopic aqueous/oil systems are also reported, and are illustrated to correlate linearly with values determined in emulsions. The distribution coefficients (P = CoilCaqueus) for the different PPD decrease in the order 2 > 5 > 3 ≈ 4 for each of the six oils. The largest distribution coefficients are obtained with THP, and the smallest are obtained with DOD. The interface appears to play a significant role in modifying solute distribution in emulsions.  相似文献   

14.
15.
The behaviors of cellulose chains and cellulose mini-crystal in oil-in-water emulsions were studied by molecular dynamics simulations to investigate the coating states and the structural features of cellulose in these emulsions. In oil-in-water emulsion, dispersed cellulose chains gradually assemble during the progress of the simulation, eventually surrounding the octane droplet. In case of a cellulose mini-crystal, the cellulose chain at the corner of the crystal first contacts with the octane droplet through its hydrophobic surface. The other cellulose chains along the crystal plane then gradually move toward the octane molecules. In both emulsions, the cellulose was found to interact with both water and octane surfaces with specific conformations that allow the CH groups of the glucose rings to contact with octane molecules, while the OH groups of these rings contact with water molecules to form hydrogen bonds. The cellulose chains on the octane droplet also contact with each other through lateral hydrogen bonding between chains. These interactions stabilize the emulsion formed by cellulose molecules as surfactants.  相似文献   

16.
We fabricate oil-in-water emulsions above the melting temperature of the oil phase (hexadecane and/or paraffin). Upon cooling, the oil droplets crystallize and the initially fluid emulsions turn into hard gels. The systems evolve by following two distinct regimes that depend on the average droplet size and on the oil nature. In some cases gelling involves partial coalescence of the droplets, i.e., film rupturing with no further shape relaxation because of the solid nature of the droplets. In some other cases, gelling occurs without film rupturing and is reminiscent of a jamming transition induced by surface roughness. We prepare blends of oils having different melting temperatures, and we show that it is possible to reinforce the gel stiffness by applying a temperature cycle that produces partial melting of the crystal mass, followed by recrystallization.  相似文献   

17.
This paper shows that low concentrations of beta-lactoglobulin fibrils can induce depletion-flocculation in beta-lactoglobulin-stabilized oil-in-water emulsions. The minimum required fibril concentration for flocculation was determined experimentally for fibril lengths of about 3 and 0.1 microm. The minimum fibril concentration for flocculation is two orders of magnitude higher for the short fibrils than for the long ones. These experimental results correspond well with a theoretical prediction based on a model of spinodal decomposition. In addition, rheological measurements were performed, verifying that flocculation was induced by a depletion mechanism. The results of this study show that the minimum concentration required for depletion-flocculation can be tuned by varying the length of the fibrils.  相似文献   

18.
Partially hydrophobised fumed silica particles are used to make silicone oil-in-water emulsions at natural pH of the aqueous phase. The stability and rheological properties of the emulsions and suspensions are studied at NaCl concentrations in the range 0-100 mM. It is found that all emulsions are very stable to coalescence irrespective of the NaCl concentration. However, a strong effect of electrolyte on the creaming and rheological properties is observed and linked to the particle interactions in aqueous suspensions. The creaming rate and extent are large at low electrolyte concentrations but both abruptly decrease at salt concentrations exceeding the critical flocculation concentration of the suspension (approximately 1 mM NaCl). The drastic improvement of the stability to creaming is attributed to the formation of a visco-elastic three-dimensional network of interconnected particles and emulsion droplets.  相似文献   

19.
The effects of incorporating an additional component, egg-yolk lecithin, on the properties of oil-in-water emulsions stabilized by casein have been studied. The impact of lecithin on the stability of the emulsions was studied using integrated light scattering and the casein-oil-lecithin interaction was studied with photon correlation spectroscopy combined with breakdown of the adsorbed protein layers by proteolysis. Lecithin was found to enhance the stability of the emulsions at low cascin concentrations, below the limiting surface coverage of 1 mg m−2 of casein which is found in the absence of lecithin. Conversely, small amounts of casein also stabilized flocculating oil-lecithin emulsions. The hydrodynamic thickness of the adsorbed protein layer on the hydrophobic oil surface was modified by the presence of lecithin. When the total surface area occupied by lecithin was less than 10% (5 mg lecithin for 2 ml oil), the thickness of the adsorbed casein layer was not significantly different from that in the absence of phospholipid. At higher concentrations of lecithin, the adsorbed casein layer had a lower minimum value for the layer thickness of 6.5 nm at low casein concentration and an upper plateau value of 8 nm at saturated adsorption, compared to a low limit of 5 nm and a plateau value of 10 nm in the absence of lecithin, demonstrating that the structure of the adsorbed casein layer was changed by the presence of phospholipid.  相似文献   

20.
Evaporation rates of water from concentrated oil-in-water emulsions   总被引:3,自引:0,他引:3  
We have investigated the rate of water evaporation from concentrated oil-in-water (o/w) emulsions containing an involatile oil. Evaporation of the water continuous phase causes compression of the emulsion with progressive distortion of the oil drops and thinning of the water films separating them. Theoretically, the vapor pressure of water is sensitive to the interdroplet interactions, which are a function of the film thickness. Three main possible situations are considered. First, under conditions when the evaporation rate is controlled by mass transfer across the stagnant vapor phase, model calculations show that evaporation can, in principle, be slowed by repulsive interdroplet interactions. However, significant retardation requires very strong repulsive forces acting over large separations for typical emulsion drop sizes. Second, water evaporation may be limited by diffusion in the network of water films within the emulsion. In this situation, water loss by evaporation from the emulsion surface leads to a gradient in the water concentration (and in the water film thickness). Third, compression of the drops may lead to coalescence of the emulsion drops and the formation of a macroscopic oil film at the emulsion surface, which serves to prevent further water evaporation. Water mass-loss curves have been measured for silicone o/w emulsions stabilized by the anionic surfactant SDS as a function of the water content, the thickness of the stagnant vapor-phase layer, and the concentration of electrolyte in the aqueous phase, and the results are discussed in terms of the three possible scenarios just described. In systems with added salt, water evaporation virtually ceases before all the water present is lost, probably as a result of oil-drop coalescence resulting in the formation of a water-impermeable oil film at the emulsion surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号