首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While several studies on the public opinion of nanotechnology have pointed to a rather enthusiastic U.S. public, the public uptake of nanotechnology in Europe is more contained. The results of the Swiss publifocus on nanotechnology reveal a pragmatic attitude of citizens toward the emerging technologies, thus confirming what has been identified as a “balanced approach” in the NanoJury UK.
Regula Valérie BurriEmail:
  相似文献   

2.
A January 2005 telephone survey of 1200 people in the U.S. and 2000 Canadians provides a snapshot of current North American opinion regarding nanotechnology at this crucial early point in its emergence from the laboratory to the arena of public discourse and public understanding. Using a typology of “publics” developed through analysis of a previous comparative survey (Priest, S., 2006) and subsequently tested against these newer data (Priest, S., 2005) this article describes the opinion climate for nanotechnology across North America. The comparison of key results from the two countries helps illustrate how social and cultural differences contribute to reactions to new technologies, including nanotech. The article also discusses implications for nanotechnology-related public outreach and risk communication efforts.  相似文献   

3.
Over the last decade social scientific researchers have examined how the public perceives risks associated with nanotechnology. The body of literature that has emerged has been methodologically diverse. The findings have confirmed that some publics perceive nanotechnology as riskier than others, experts feel nanotechnology is less risky than the public does, and despite risks the public is optimistic about nanotechnology development. However, the extant literature on nanotechnology and risk suffers from sometimes widely divergent findings and has failed to provide a detailed picture of how the public actually feels about nanotechnology risks when compared to other risks. This study addresses the deficiencies in the literature by providing a comparative approach to gauging nanotechnology risks. The findings show that the public does not fear nanotechnology compared to other risks. Out of 24 risks presented to the participants, nanotechnology ranked 19th in terms of overall risk and 20th in terms of “high risk.”  相似文献   

4.
Nanotechnology, as with many technologies before it, places a strain on existing legislation and poses a challenge to all administrative agencies tasked with regulating technology-based products. It is easy to see how statutory schemes become outdated, as our ability to understand and affect the world progresses. In this article, we address the regulatory problems that nanotechnology posses for the Food and Drug Administration’s (FDA) classification structure for “drugs” and “devices.” The last major modification to these terms was in 1976, with the enactment of the Medical Device Amendments. There are serious practical differences for a classification as a drug or device in terms of time to market and research. Drugs are classified, primarily, as acting by “chemical action.” We lay out some legal, philosophic, and scientific tools that serve to provide a useful, as well as legally and scientifically faithful, distinction between drugs and devices for the purpose of regulatory classification. These issues we raise are worth the consideration of anyone who is interested in the regulation of nano-products or other novel technologies.  相似文献   

5.
It is urgent to use a “warm liquid” TMS in large massive calorimeters (with a volume of several hundred liters). This direction in modern nuclear physics is referred to as “non-accelerator” experiments with low-background detectors. Such experiments are associated with the solution of most important problems to understand the Universe structure and search for new particles. These are the well-known problems for searching “dark matter” in the form of new weakly interacting particles, i.e., wimps, observations of coherent scattering of reactor neutrinos. Using this experiment, the standard model of electroweak interactions can be tested. The fully developed fabrication technology of large amounts of “warm liquid” ТМS (in collaboration with the State Research Institute of Chemistry and Technology of Organoelement Compounds) makes it possible to perform such experiments.  相似文献   

6.
The societal impacts of nanotechnology have attracted growing attention in the United States and Europe in recent years. In Japan, the National Institute of Advanced Industrial Science and Technology (Technology Information Department) has played a central role in promoting discussions on this topic by collecting information from Japan and overseas, creating a network of the interested parties, and providing a forum for discussion. This paper presents a summary of recent activities in Japan relating to the societal impacts of nanotechnology, fro the launch of the “Nanotechnology and Society” open forum (August 2004) until the “Nanotechnology Debate” discussion forum (February 2007), and outlines the policy recommendations that came out of a project entitled “Research on Facilitation of Public Acceptance of Nanotechnology” (March 2006).  相似文献   

7.
Intermolecular forces are modeled by means of a modified Lennard-Jones potential, introducing a distance of minimum approach, and the effect of intermolecular interactions is accounted for with a self consistent field of the Vlasov type. A Vlasov equation is then written and used to investigate the propagation of perturbations in a liquid. A dispersion relation is obtained and an effect of damping, analogous to what is known in plasmas as “Landau damping”, is found to take place.  相似文献   

8.
Nanotechnology patent applications published during 1991–2008 have been examined using the “title–abstract” keyword search on esp@cenet “worldwide” database. The longitudinal evolution of the number of patent applications, their topics, and their respective patent families have been evaluated for 15 national patent offices covering 98% of the total global activity. The patent offices of the United States (USA), People’s Republic of China (PRC), Japan, and South Korea have published the largest number of nanotechnology patent applications, and experienced significant but different growth rates after 2000. In most repositories, the largest numbers of nanotechnology patent applications originated from their own countries/regions, indicating a significant “home advantage.” The top applicant institutions are from different sectors in different countries (e.g., from industry in the US and Canada patent offices, and from academe or government agencies at the PRC office). As compared to 2000, the year before the establishment of the US National Nanotechnology Initiative (NNI), numerous new invention topics appeared in 2008, in all 15 patent repositories. This is more pronounced in the USA and PRC. Patent families have increased among the 15 patent offices, particularly after 2005. Overlapping patent applications increased from none in 1991 to about 4% in 2000 and to about 27% in 2008. The largest share of equivalent nanotechnology patent applications (1,258) between two repositories was identified between the US and Japan patent offices.  相似文献   

9.
Federal oversight of nanobiotechnology in the U.S. has been fragmented and incremental. The prevailing approach has been to use existing laws and other administrative mechanisms for oversight. However, this “stay-the-course” approach will be inadequate for such a complex and convergent technology and may indeed undermine its promise. The technology demands a new, more dynamic approach to oversight. The authors are proposing a new oversight framework with three essential features: (a) the oversight trajectory needs to be able to move dynamically between “soft” and “hard” approaches as information and nano-products evolve; (b) it needs to integrate inputs from all stakeholders, with strong public engagement in decision-making to assure adequate analysis and transparency; and (c) it should include an overarching coordinating entity to assure strong inter-agency coordination and communication that can meet the challenge posed by the convergent nature of nanobiotechnology. The proposed framework arises from a detailed case analysis of several key oversight regimes relevant to nanobiotechnology and is informed by inputs from experts in academia, industry, NGOs, and government.  相似文献   

10.
Expert opinion on nanotechnology: risks,benefits, and regulation   总被引:2,自引:2,他引:0  
A survey of American (US) nanotechnology researchers (N = 177) suggests a diversity of views about what areas are most important to the burgeoning field, as well as perceptions about the overall benefits and risks of such research. On average, respondents saw a range of technologies as key and viewed public health and environmental issues as areas where both risks and the need for regulation are greatest. These areas were also where respondents said current regulations were least adequate. Factor analyses of the survey questions suggest that, when considering both risks and regulations, respondents make a distinction between health and environmental risks, and what might be termed “social risks” (e.g., invasion of privacy, use of nanotechnology in weapons, and economic impacts).
John C. BesleyEmail:
  相似文献   

11.
We present a step by step introduction to the notion of time-delay in classical and quantum mechanics, with the aim of clarifying its foundation at a conceptual level. In doing so, we motivate the introduction of the concepts of “fuzzy” and “free-flight” sojourn times that we use to provide the most general possible definition for the quantum time-delay, valid for simple and multichannel scattering systems, with or without conditions on the observation of the scattering particle, and for incoming wave packets whose energy can be smeared out or sharply peaked (fixed energy). We conclude our conceptual analysis by presenting what we think is the right interpretation of the concepts of sojourn and delay times in quantum mechanics, explaining why, in ultimate analysis, they should not be called “times.”  相似文献   

12.
This article presents early results from an opinion formation study based on a 76-member panel of U.S. citizens, with comparison data from a group of 177 nanotechnology experts. While initially similar to the expert group in terms of their perceptions of the risks, benefits, and need for regulation characterizing several forms of nanotechnology, the first follow-up survey indicates that the panel is beginning to diverge from the experts, particularly with respect to perceptions of the levels of various “societal” risks that nanotechnology might present. The data suggest that responding to public concerns may involve more than attention to physical risks in areas such as health and environment; concerns about other forms of risk actually appear more salient.  相似文献   

13.
The term, “field,” made its first appearance in physics as a technical term in the mid-nineteenth century. But the notion of what later came to be called a field had been a long time in gestation. Early discussions of magnetism and of the cause of the ocean tides had long ago suggested the idea of a “zone of influence” surrounding certain bodies. Johannes Kepler's mathematical rendering of the orbital motion of Mars encouraged him to formulate what he called “a true theory of gravity” involving the notion of attraction. Isaac Newton went on to construct an eminently effective dynamics, with attraction as its primary example of force. Was his a field theory? Historians of science disagree. Much depends on whether a theory consistent with the notion of action at a distance ought qualify as a “field” theory. Roger Boscovich and Immanuel Kant later took the Newtonian concept of attraction in new directions. It was left to Michael Faraday to propose the “physical existence” of lines of force and to James Clerk Maxwell to add as criterion the presence of energy as the ontological basis for a full-blown “field theory” of electromagnetic phenomena.  相似文献   

14.
To assess worldwide development of nanotechnology, this paper compares the numbers and contents of nanotechnology patents in the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO). It uses the patent databases as indicators of nanotechnology trends via bibliographic analysis, content map analysis, and citation network analysis on nanotechnology patents per country, institution, and technology field. The numbers of nanotechnology patents published in USPTO and EPO have continued to increase quasi-exponentially since 1980, while those published in JPO stabilized after 1993. Institutions and individuals located in the same region as a repository’s patent office have a higher contribution to the nanotechnology patent publication in that repository (“home advantage” effect). The USPTO and EPO databases had similar high-productivity contributing countries and technology fields with large number of patents, but quite different high-impact countries and technology fields after the average number of received cites. Bibliographic analysis on USPTO and EPO patents shows that researchers in the United States and Japan published larger numbers of patents than other countries, and that their patents were more frequently cited by other patents. Nanotechnology patents covered physics research topics in all three repositories. In addition, USPTO showed the broadest representation in coverage in biomedical and electronics areas. The analysis of citations by technology field indicates that USPTO had a clear pattern of knowledge diffusion from highly cited fields to less cited fields, while EPO showed knowledge exchange mainly occurred among highly cited fields.  相似文献   

15.
Trends for nanotechnology development in China, Russia, and India   总被引:1,自引:0,他引:1  
China, Russia, and India are playing an increasingly important role in global nanotechnology research and development (R&D). This paper comparatively inspects the paper and patent publications by these three countries in the Thomson Science Citation Index Expanded (SCI) database and United States Patent and Trademark Office (USPTO) database (1976–2007). Bibliographic, content map, and citation network analyses are used to evaluate country productivity, dominant research topics, and knowledge diffusion patterns. Significant and consistent growth in nanotechnology papers are noted in the three countries. Between 2000 and 2007, the average annual growth rate was 31.43% in China, 11.88% in Russia, and 33.51% in India. During the same time, the growth patterns were less consistent in patent publications: the corresponding average rates are 31.13, 10.41, and 5.96%. The three countries’ paper impact measured by the average number of citations has been lower than the world average. However, from 2000 to 2007, it experienced rapid increases of about 12.8 times in China, 8 times in India, and 1.6 times in Russia. The Chinese Academy of Sciences (CAS), the Russian Academy of Sciences (RAS), and the Indian Institutes of Technology (IIT) were the most productive institutions in paper publication, with 12,334, 6,773, and 1,831 papers, respectively. The three countries emphasized some common research topics such as “Quantum dots,” “Carbon nanotubes,” “Atomic force microscopy,” and “Scanning electron microscopy,” while Russia and India reported more research on nano-devices as compared with China. CAS, RAS, and IIT played key roles in the respective domestic knowledge diffusion.  相似文献   

16.
While a considerable and world-wide growth of the nuclear share in the global energy mix is desirable for many reasons, a major concern or objection is the long-term burden that is constituted by the radiotoxic waste from the spent fuel. The concept of Partitioning & Transmutation, a scientific and technological answer, is therefore of high interest. Its deployment may use dedicated “Transmuter” or “Burner” reactors, using a fast neutron spectrum. For the transmutation of waste with a large content (up to 50%) of (very long-lived) Minor Actinides, a sub-critical reactor, using an external neutron source is a solution of high interest. It is constituted by coupling a proton accelerator, a spallation target and a subcritical core. This promising new technology is named ADS, for accelerator-driven system. The present paper aims at an introduction into the field in order to focus, in its later part, on the development of the required accelerator technology.  相似文献   

17.
On the basis of a new method for the derivation of the effective action the nonperturbative concept of “ dynamical generation” is explained. A non-trivial, non-Hermitian and PT-symmetric solution for Wightman's scalar field theory in four dimensions is dynamically generated, rehabilitating Symanzik's precarious φ4-theory with a negative quartic coupling constant as a candidate for an asymptotically free theory of strong interactions. Finally it is shown making use of the dynamical generation that a Symanzik-like field theory with scalar confinement for the theory of strong interactions can be even suggested by experiment. Presented at the 3rd International Workshop “Pseudo-Hermitian Hamiltonians in Quantum Physics”, Istanbul, Turkey, June 20–22, 2005.  相似文献   

18.
Even a cursory reading of the public engagement in science (PES) literature over the past decade reveals that public engagement is becoming part of the “orthodoxy of 21st century science policy” (Stilgoe, Nanodialogues: experiments in public engagement with science, 2007, p 16), Moving forward, there appears to be strong consensus that (1) public engagement is an essential component for shaping sound science policies, research agendas, and governance structures; (2) more opportunities for accessible and successful PES need to be developed and implemented to have meaningful impact; and (3) a broader and more diverse range of publics need to be reached through PES activities. This article explores the role that U.S. science museums and centers could play in creating and delivering PES programming focusing on current science and technology developments and issues, with particular attention to nanoscience and nanotechnology. Also addressed will be some of the factors that support increased PES involvement by museums, some of the challenges museums need to overcome to sustain ongoing PES, and several recommendations to achieve broader PES impact through science museum participation.  相似文献   

19.
I argue that there are strong reasons for resisting as a principle of science the concept of “anthropic selection.” This concept asserts that the existence of “observers” in a universe can be used as a condition that selects physical laws and constants necessary for intelligent life from different laws or physical constants prevailing in a vast number of other universes, to thereby explain why the properties of our universe are conducive to intelligent life. My reasons for limiting “anthropic selection” to the realm of speculation rather than permitting it to creep into mainstream science include our inability to estimate the probabilities of emergence of “observers” in a universe, the lack of testability through direct observation of the assumed high variability of the constants of nature, the lack of a clear definition of an “observer,” and the arbitrariness in how and to what questions anthropic selection is applied.  相似文献   

20.
Einstein, in his “Zur Elektrodynamik bewegter K?rper”, gave a physical (operational) meaning to “time” of a remote event in describing “motion” by introducing the concept of “synchronous stationary clocks located at different places”. But with regard to “place” in describing motion, he assumed without analysis the concept of a system of co-ordinates.In the present paper, we propose a way of giving physical (operational) meaning to the concepts of “place” and “co-ordinate system”, and show how the observer can define both the place and time of a remote event. Following Einstein, we consider another system “in uniform motion of translation relatively to the former”. Without assuming “the properties of homogeneity which we attribute to space and time”, we show that the definitions of space and time in the two systems are linearly related. We deduce some novel consequences of our approach regarding faster-than-light observers and particles, “one-way” and “two-way” velocities of light, symmetry, the “group property” of inertial reference frames, length contraction and time dilatation, and the “twin paradox”. Finally, we point out a flaw in Einstein’s argument in the “Electrodynamical Part” of his paper and show that the Lorentz force formula and Einstein’s formula for transformation of field quantities are mutually consistent. We show that for faster-than-light bodies, a simple modification of Planck’s formula for mass suffices. (Except for the reference to Planck’s formula, we restrict ourselves to Physics of 1905.)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号