首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourier transform infrared and Fourier transform Raman spectra of Cu(II) bis-acetylacetone have been obtained. The geometry, frequency and intensity of the vibrational bands of this compound and its 1,5-(13)C(2), 3-(13)C, 1,3,5-(13)C(3), 2,4-(13)C(2), (18)O(2) and 2,4-(13)C(2)-(18)O(2) derivatives were obtained by the density functional theory (DFT) with the B3LYP functional and using the 6-31G(*) and 3-21G(*) basis sets. The calculated frequencies are compared with the solid infrared and Raman spectra. All the measured infrared and Raman bands were interpreted in terms of the calculated vibrational modes. The percentage of deviation of the bond lengths and bond angles gives a good picture of the normal modes, and serves as a basis for the assignment of the wavenumbers. Most computed bands are predicted to be at higher wavenumbers than the experimental bands. The calculated geometrical parameters show slight differences compared with the experimental results. These differences can be explained by the different physical state of Cu(II) bis-acetylacetone. The DFT-B3LYP calculations assumed a free molecule in the gas phase. Analysis of the vibrational spectra indicates a strong coupling between the chelated ring modes.  相似文献   

2.
FT Raman and FTIR spectra of Naphthazarin (5,8-dihydroxy-1,4-naphthoquinone) and its deuterated analogue are recorded. Comparison between the spectra obtained by two techniques, a series of density functional theory (DFT) calculations and the spectral behavior upon deuteration were used for the assignment of the vibrational spectra of this compound. The calculated vibrational frequencies by the B3LYP, B3PW91, G96LYP, G96P86, and MPWLYP density functionals are generally consistent with the observed spectra. Infrared and Raman vibrational transitions predicted by B3LYP/6-311++G** are reported for the titled compound and its deuterated analogous and the assignments are discussed. All experimental and theoretical results support a relatively weak hydrogen bond in naphthazarin (NZ), compared with that in the enol form of normal beta-diketones. The observed nuOH/nuOD and gammaOH/gammaOD appear at about 3060/2220 and 790/560 cm(-1), respectively, which are consistent with the calculated hydrogen bond geometry and proton chemical shift results. Two bands at about 350 and 290 cm(-1) are assigned to the O...O stretching modes belong to A1 and B2 species, respectively.  相似文献   

3.
The ground-state structure and electronic and vibrational spectra of octaethylporphyrin diacid (H4OEP2+) have been studied with the density functional theory. The geometrical parameters computed with B3LYP, PBE1PBE and mPW1PW91 functionals and 6-31G* basis sets are well consistent with the experimental values. Electronic absorption spectrum of H4OEP2+ has been studied with the time-dependent DFT method, and the calculated excitation energies and oscillator strengths are compared with the experimental results. The Raman and IR spectra of H4OEP2+ and the Raman spectrum of its N-deuterated analogue (D4OEP2+) were measured. The observed Raman and IR bands have been assigned based on the frequency calculations at the B3LYP/6-31G* level of theory.  相似文献   

4.
Molecular structure of 1,1,1-trifluoro-pentane-2,4-dione, known as trifluoro-acetylacetone (TFAA), has been investigated by means of Density Functional Theory (DFT) calculations and the results were compared with those of acetylacetone (AA) and hexafluoro-acetylacetone (HFAA). The harmonic vibrational frequencies of both stable cis-enol forms were calculated at B3LYP level of theory using 6-31G** and 6-311++G** basis sets. We also calculated the anharmonic frequencies at B3LYP/6-31G** level of theory for both stable cis-enol isomers. The calculated frequencies, Raman and IR intensities, and depolarization ratios were compared with the experimental results. The energy difference between the two stable cis-enol forms, calculated at B3LYP/6-311++G**, is only 5.89 kJ/mol. The observed vibrational frequencies and Raman and IR intensities are in excellent agreement with the corresponding values calculated for the most stable conformation, 2TFAA. According to the theoretical calculations, the hydrogen bond strength for the most stable conformer is 57 kJ/mol, about 9.5kJ/mol less than that of AA and about 14.5 kJ/mol more than that of HFAA. These hydrogen bond strengths are consistent with the frequency shifts for OH/OD stretching and OH/OD out-of-plane bending modes upon substitution of CH(3) groups with CF(3) groups. By comparing the vibrational spectra of both theoretical and experimental data, it was concluded that 2TFAA is the dominant isomer.  相似文献   

5.
Fourier-transform Raman and infrared spectra of 2-nitroanisole are recorded (4000-100 cm(-1)) and interpreted by comparison with respective theoretical spectra calculated using HF and DFT method. The geometrical parameters with C(S) symmetry, harmonic vibrational frequencies, infrared and Raman scattering intensities are determined using HF/6-311++G (d, p), B3LYP/6-311+G (d, p), B3LYP/6-311++G (d, p) and B3PW91/6-311++G (d, p) level of theories. A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The SQM method, which implies multiple scaling of the DFT force fields has been shown superior to the uniform scaling approach. The vibrational frequencies and the infrared intensities of the C-H modes involved in back-donation and conjugation are also investigated.  相似文献   

6.
The purpose of finding conformer among six different possible conformers of 2,5-di-tert-butyl-hydroquinone (DTBHQ), its equilibrium geometry and harmonic wavenumbers were calculated by the B3LYP/6-31G(d,p) method. The infrared and Raman spectra of DTBHQ were recorded in the region 400-4000 cm(-1) and 50-3500 cm(-1), respectively. In addition, the IR spectra in CCl(4) at various concentrations of DTBHQ are also recorded. The computed vibrational wavenumbers were compared with the IR and Raman experimental data. Computational calculations at B3LYP level with two different basis sets 6-31G(d,p) and 6-311++G(d,p) are also employed in the study of the possible conformer of DTBHQ. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA 4 program. The general agreement between the observed and calculated frequencies was established.  相似文献   

7.
We have carried out a structural and vibrational theoretical study for chromyl nitrate. The density functional theory has been used to study its structure and vibrational properties. The geometries were fully optimised at the B3LYP/Lanl2DZ, B3LYP/6-31G* and B3LYP/6-311++G levels of theory and the harmonic vibrational frequencies were evaluated at the same levels. The calculated harmonic vibrational frequencies for chromyl nitrate are consistent with the experimental IR and Raman spectra in the solid and liquid phases. These calculations gave us a precise knowledge of the normal modes of vibration taking into account the type of coordination adopted by nitrate groups of this compound as monodentate and bidentate. We have also made the assignment of all the observed bands in the vibrational spectra for chromyl nitrate. The nature of the Cr-O and Cr<--O bonds in the compound were quantitatively investigated by means of Natural Bond Order (NBO) analysis. The topological properties of electronic charge density are analysed employing Bader's Atoms in Molecules theory (AIM).  相似文献   

8.
The molecular geometry, vibrational frequencies and NBO analysis of phenylisothiocyanate (PITC) in the ground state have been calculated by using density functional theory calculation (B3LYP) with 6-311++G(d,p) basis set. The optimized geometrical parameters obtained by DFT calculations are in good agreement with experimental values. Comparison of the observed fundamental vibrational frequencies of the PITC and calculated result by density functional theory (B3LYP) indicates B3LYP is superior for molecular vibrational problems. The entropy of the title compound was also performed at HF/B3LYP/6-311++G(d,p) levels of theory. Natural bond orbital (NBO) analysis of title molecule is also carried out. A detailed interpretation of the IR and Raman spectra of PITC is reported on the basis of the calculated potential energy distribution (PED). The theoretical spectrogram for IR spectrum of the title molecule has been constructed.  相似文献   

9.
Quantum chemistry calculations have been performed using Gaussian03 program to compute optimized geometry, harmonic vibrational frequency along with intensities in IR and Raman spectra and atomic charges at RHF/6-31+G*, B3LYP/6-31+G* and B3LYP/6-31++G* levels for 2-mercaptobenzothiazole (MBT, C7H5NS2) and 2-mercaptobenzoxazole (MBO, C7H5NOS) in the ground state. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR and FT-Raman spectra. The results show that the scaled theoretical vibrational frequencies is very good agreement with the experimental values. A detailed interpretation of the infrared and Raman spectra of 2-mercaptobenzothiazole and 2-mercaptobenzoxazole was reported. Comparison of calculated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes.  相似文献   

10.
In this work, the Fourier transform Raman and Fourier transform infrared spectra of 2-chloronicotinic acid (2-CNA) are recorded in the solid phase. The molecular geometry, vibrational frequencies, infrared intensities and Raman scattering activities of 2-CNA in ground state have been calculated by using ab initio Hartree–Fock (HF) and density functional (B3LYP and B3PW91) methods with 6-31G(d) and 6-311G(d) basis sets level. On the basis of the comparison between calculated and experimental results and the comparison with related molecule, assignments of fundamental vibrational modes are examined. The optimized geometric parameters (bond lengths and bond angles) obtained by using HF show the best agreement with the experimental values of 2-CNA. Comparison of the observed fundamental vibrational frequencies of 2-CNA and calculated results by density functional (B3LYP and B3PW91) and Hartree–Fock methods indicates that B3LYP is superior to the scaled Hartree–Fock and B3PW91 approach for molecular vibrational problems.  相似文献   

11.
The FT-Raman and FT-IR spectra for 3-Ethylpyridine (3-EP) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using HF/DFT (B3LYP) method by employing 6-31G(d,p) and 6-311++G(d,p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by HF and DFT (B3LYP) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values of some substituted benzene. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from HF and DFT. The scaled vibrational frequencies at B3LYP/6-311++G(d,p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the pyridine are effected upon profusely with the C2H5 substitutions in comparison to pyridine and these differences are interpreted.  相似文献   

12.
The FTRaman and FTIR spectra for Toluic acid (TA) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using HF/DFT (LSDA and B3LYP) method BY employing 6-311G (d, p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by HF and DFT (LSDA/B3LYP) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values for benzoic acid and some substituted benzoic acids. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from HF and DFT. The scaled vibrational frequencies at B3LYP/6-311G (d, p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the TA are effected upon profusely with the methyl substitutions in comparison to benzoic acid and these differences are interpreted.  相似文献   

13.
The herbicide 2(4-chlorophenoxy)-2-methyl propionic acid (MCPP) has been subjected to NIR FT-Raman and infrared spectral studies. The optimized molecular structure, vibrational wavenumbers, IR intensities and Raman activities have been calculated by using density functional method (B3LYP) with the standard 6-31G(d) basis set. The calculated molecular geometry has been compared with the XRD data. The detailed assignments of the normal modes have been performed based on the potential energy distribution (PED) following the scaled quantum mechanical force field (SQMFF) methodology. The IR and Raman spectra have been plotted for the calculated wavenumbers. The simulated spectra satisfactorily coincide with the experimental spectra. The strong hyperconjugative interaction and charge delocalization that leads to the stability of the molecule have been investigated with the aid of natural bond orbital (NBO) analysis.  相似文献   

14.
This work deals with the vibrational spectroscopy of succinimide and N-bromosuccinimide. The mid and far FTIR and FT-Raman spectra were measured in the condensed state. The fundamental vibrational frequencies and intensity of vibrational bands were evaluated using density functional theory (DFT) using standard B3LYP/6-31G(*) and B3LYP/6-311+G(**) methods and basis set combinations. The vibrational spectra were interpreted, with the aid of normal coordinate analysis based on a scaled quantum mechanical force field. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes. Unambiguous vibrational assignment of all the fundamentals were made using the total energy distribution (TED).  相似文献   

15.
The FT-Raman and FT-IR spectra for benzenesulfonic acid methyl ester (BSAME) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using DFT (LSDA, B3LYP, B3PW91 and MPW1PW91) method by employing 6-311G (d, p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by DFT (LSDA, B3LYP, B3PW91 and MPW1PW91) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values for sulfonic acid and some substituted sulfonic acids. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from DFT. The scaled vibrational frequencies at LSDA/B3LYP/6-311G (d, p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the sulfonic acid are effected upon profusely with the methyl substitution in comparison to benzene sulfonamide and these differences are interpreted.  相似文献   

16.
The solid-state X-ray diffraction, FT-IR and FT-Raman measurements of cynacure have been performed. Optimized molecular structures and normal vibrations of cynacure and 2-(methylthio)aniline have been calculated in the gas phase at the B3LYP/6-311++G** level. Scaling factors that bring computational gas-phase frequencies in closer agreement with the solid-state experimental data have been calculated for each vibration type. The observed IR and Raman bands of cynacure and 2-(methylthio)aniline have been assigned in the frameworks of the calculated mode frequencies as well as the calculated IR and Raman intensities. The assignments of the normal modes of cynacure have been compared with those of the benzene and 2-(methylthio)aniline modes. The effects of the substitution on the benzene vibrational frequencies have been investigated. 2-(Methylthio)aniline and cynacure both have four stable conformers. The calculated ground-state energetics and vibrational spectra of 2-(methylthio)aniline and cynacure suggest the coexistence of their stable conformers at the room temperature.  相似文献   

17.
FT-IR (4000-100 cm(-1)) and FT-Raman (4000-100 cm(-1)) spectra of solid sample of 4-chloro-2-fluoro toluene (4Cl2FT) have been recorded using Bruker IFS 66 V spectrometer. Ab initio-HF (HF/6-311++G (d, p)) and DFT (B3LYP/6-311++G and B3PW91/6-311++G (d, p)) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, depolarization ratios, IR intensities, Raman activities. The vibrational frequencies are calculated and scaled values are compared with FT-IR and FT-Raman experimental values. The isotropic HF and DFT analyses showed good agreement with experimental observations. The differences between the observed and scaled wave number values of most of the fundamentals are very small in B3LYP than HF. Comparison of the simulated spectra provides important information about the ability of the computational method (B3LYP) to describe the vibrational modes. The influences of substitutions on the geometry of molecule and its normal modes of vibrations have also been discussed. The changes made by substitutions on the benzene are much responsible for the non-linearity of the molecule. This is an attractive entity for the future studies of non-linear optics.  相似文献   

18.
A theoretical study of the structure and the vibrational spectra of the beta-carotene molecule and its derivatives capsanthin and capsorubin is carried out. We first investigate systematically the theoretical method which provides the best results for beta-carotene by performing ab initio calculations at the HF/6-31G(d), SVWN/6-31G(d), PBE0/6-31G(d), BLYP/6-31G(d), B3LYP/6-31G(d), B3LYP/6-31G(d,p), B3LYP/6-311G(d), and B3LYP/6-311G(d,p) levels and by using previous theoretical results available in the literature obtained at the AM1 and BPW91/6-31G(d) levels. The influence of both the level of calculation and the size of the basis set used in the geometry optimization and in the determination of the IR and Raman spectra of this molecule is thus analyzed. It is confirmed that the hybrid functional B3LYP with the basis 6-31G(d) is the method that gives the best results as a whole. By use of this level of calculation, we next optimize the molecular geometries of related molecules of capsanthin and capsorubin, which to the best of our knowledge have only been studied at the semiempirical AM1 level. In addition we calculate the IR and Raman spectra of these molecules at the B3LYP/6-31G(d) level of theory. The results obtained for capsanthin show on the one hand that the double bond of the beta-ionone ring is outside the polyene chain plane, due to the repulsion between the hydrogen atoms of the ring methyl groups and the hydrogen atoms of the polyene chain, and on the other hand that the carbonyl double bond in the other headgroup is very close to planarity with the polyene chain, since in this case such a repulsion does not exist. For the molecule of capsorubin the two carbonyl groups also take the same coplanar orientation relative to the polyene chain. The IR and Raman spectra theoretically computed for these two molecules are finally compared with their experimental spectra and the vibrational normal modes of the main signals are interpreted.  相似文献   

19.
The solid phase mid FTIR and FT Raman spectra of 2-naphthoic acid (NA) and 6-bromo-2-naphthoic acid (BNA) have been recorded in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The fundamental vibrational frequencies and intensities of the vibrational bands were evaluated using density functional theory (DFT) using standard B3LYP method and 6-311+G** basis set combinations. The vibrational spectra were interpreted, with the aid of normal coordinate analysis based on a scaled quantum mechanical force field. The infrared and Raman spectra were also predicted from the calculated intensities. Comparison of simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes.  相似文献   

20.
A structural and vibrational theoretical study for vanadyl nitrate was carried out. The Density Functional Theory (DFT) has been used to study vibrational properties. The structures were fully optimized at the B3LYP/6‐31G*, B3LYP/6‐311G*, and B3LYP/6‐311+G* levels of theory and the harmonic vibrational frequencies were evaluated at the same level. The calculated harmonic vibrational frequencies for vanadyl nitrate are consistent with their experimental IR and Raman spectra in gas and liquid phases. Through these calculations a precise knowledge of the normal modes of vibration was obtained, considering the coordination mode adopted by the nitrate group in the mirror plane as monodentate and bidentate. A total assignment of the observed bands in the vibrational spectra for vanadyl nitrate is proposed in this work. The nature of the V–O and V ← O bonds in the compound was systematically and quantitatively investigated by means of the Natural Bond Order (NBO) analysis. The topological properties of the electronic charge density were analyzed employing Bader's Atoms in Molecules theory (AIM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号