首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The synthesis of perfluoroalkyl-substituted "pincer"-type PCP ligands, 1,3-C6H4(CH2P(Rf)2)2 (Rf = CF3, C2F5), and platinum coordination studies (Rf = CF3) are reported. 1,3-C6H4(CH2P(CF3)2)2 (CF3PCPH) reacts at ambient temperatures with (cod)Pt(Me)Cl (cod = 1,5-cyclooctadiene) and (cod)PtMe2 to afford unmetalated PCPH-bridged products [(CF3PCPH)Pt(Me)Cl]x and cis-[(CF3PCPH)PtMe2]2, respectively. cis-[(CF3PCPH)PtMe2]2 is soluble and has been spectroscopically and crystallographically characterized. Thermolysis of these compounds results in the loss of methane and the formation of metalated complexes (CF3PCP)PtCl and (CF3PCP)PtMe. Treatment of (CF3PCP)PtCl with MeMgBr provides an alternative route to (CF3PCP)PtMe. The carbonyl cation (CF3PCP)Pt(CO)+SbF6- (nu(CO) = 2143 cm(-1)) was readily prepared by chloride abstraction with AgSbF6 under 1 atm CO. nu(CO) data indicates that RfPCP ligands are electronically analogous to trans acceptor phosphine complexes such as trans-((C2F5)2PMe)2Pt(Me)(CO)+ (nu(CO) = 2149 cm-1).  相似文献   

2.
Treatment of trans-[PtCl(4)(RCN)(2)](R = Me, Et) with the hydrazone oximes MeC(=NOH)C(R')=NNH(2)(R' = Me, Ph) at 45 degrees C in CH(2)Cl(2) led to the formation of trans-[PtCl(4)(NH=C(R)ON=C(Me)C(R')=NNH(2))(2)](R/R' = Me/Ph 1, Et/Me 2, Et/Ph 3) due to the regioselective OH-addition of the bifunctional MeC(=NOH)C(R')=NNH(2) to the nitrile group. The reaction of 3 and Ph(3)P=CHCO(2)Me allows the formation of the Pt(II) complex trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NNH(2))2](4). In 4, the imine ligand was liberated by substitution with 2 equivalents of bis(1,2-diphenylphosphino)ethane (dppe) in CDCl(3) to give, along with the free ligand, the solid [Pt(dppe)(2)]Cl(2). The free iminoacyl hydrazone, having a restricted life-time, decomposes at 20-25 degrees C in about 20 h to the parent organonitrile and the hydrazone oxime. The Schiff condensation of the free NH(2) groups of 4 with aromatic aldehydes, i.e. 2-OH-5-NO(2)-benzaldehyde and 4-NO(2)-benzaldehyde, brings about the formation of the platinum(II) complexes trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NN=CH(C(6)H(3)-2-OH-5-NO(2))2](5) and trans-[PtCl(2)(NH=C(Et)ON=C(Me)C(Ph)=NN=CH(C(6)H(4)-4-NO(2))2](6), respectively, containing functionalized remote peripherical groups. Metallization of 5, which can be considered as a novel type of metallaligand, was achieved by its reaction with M(OAc)(2).nH(2)O (M = Cu, n= 2; M = Co, n= 4) in a 1:1 molar ratio furnishing solid heteronuclear compounds with composition [Pt]:[M]= 1:1. The complexes were characterized by C, H, N elemental analyses, FAB+ mass-spectrometry, IR, 1H, 13C[1H] and (195)Pt NMR spectroscopies; X-ray structures were determined for 3, 4 and 5.  相似文献   

3.
Reductive elimination of methane occurs upon solution thermolysis of kappa(3)-Tp(Me)2Pt(IV)(CH(3))(2)H (1, Tp(Me)2 = hydridotris(3,5-dimethylpyrazolyl)borate). The platinum product of this reaction is determined by the solvent. C-D bond activation occurs after methane elimination in benzene-d(6), to yield kappa(3)-Tp(Me)2Pt(IV)(CH(3))(C(6)D(5))D (2-d(6)), which undergoes a second reductive elimination/oxidative addition reaction to yield isotopically labeled methane and kappa(3)-Tp(Me)2Pt(IV)(C(6)D(5))(2)D (3-d(11)). In contrast, kappa(2)-Tp(Me)2Pt(II)(CH(3))(NCCD(3)) (4) was obtained in the presence of acetonitrile-d(3), after elimination of methane from 1. Reductive elimination of methane from these Pt(IV) complexes follows first-order kinetics, and the observed reaction rates are nearly independent of solvent. Virtually identical activation parameters (DeltaH(++)(obs) = 35.0 +/- 1.1 kcal/mol, DeltaS(++)(obs) = 13 +/- 3 eu) were measured for the reductive elimination of methane from 1 in both benzene-d(6) and toluene-d(8). A lower energy process (DeltaH(++)(scr) = 26 +/- 1 kcal/mol, DeltaS(++)(scr) = 1 +/- 4 eu) scrambles hydrogen atoms of 1 between the methyl and hydride positions, as confirmed by monitoring the equilibration of kappa(3)-Tp(Me)()2Pt(IV)(CH(3))(2)D (1-d(1)()) with its scrambled isotopomer, kappa(3)-Tp(Me)2Pt(IV)(CH(3))(CH(2)D)H (1-d(1'). The sigma-methane complex kappa(2)-Tp(Me)2Pt(II)(CH(3))(CH(4)) is proposed as a common intermediate in both the scrambling and reductive elimination processes. Kinetic results are consistent with rate-determining dissociative loss of methane from this intermediate to produce the coordinatively unsaturated intermediate [Tp(Me)2Pt(II)(CH(3))], which reacts rapidly with solvent. The difference in activation enthalpies for the H/D scrambling and C-H reductive elimination provides a lower limit for the binding enthalpy of methane to [Tp(Me)2Pt(II)(CH(3))] of 9 +/- 2 kcal/mol.  相似文献   

4.
A novel method is reported for generation of the difficult-to-obtain (imine)Pt(II) compounds that involves reduction of the corresponding readily available Pt(IV)-based imines by carbonyl-stabilized phosphorus ylides, Ph3P=CHCO2R, in nonaqueous media. The reaction between neutral (imino)Pt(IV) compounds [PtCl4[NH=C(Me)ON=CR1R2]2] [R1R2 = Me2, (CH2)4, (CH2)5, (Me)C(Me)=NOH], [PtCl4[NH=C(Me)ONR2]2] (R = Me, Et, CH2Ph), (R1 = H; R2 = Ph or C6H4Me; R3 = Me) as well as anionic-type platinum(IV) complexes (Ph3PCH2Ph)[PtCl5[NH=C(Me)ON=CR2]] [R2 = Me2, (CH2)4, (CH2)5] and 1 equiv of Ph3P=CHCO2R (R = Me, Et) proceeds under mild conditions (ca. 4 h, room temperature) to give selectively the platinum(II) products (in good to excellent isolated yields) without further reduction of the platinum center. All thus prepared compounds (excluding previously described Delta4-1,2,4-oxadiazoline complexes) were characterized by elemental analyses, FAB mass spectrometry, IR and 1H, 13C[1H], 31P[1H] and 195Pt NMR spectroscopies, and X-ray single-crystal diffractometry, the latter for [PtCl2[NH=C(Me)ON=CMe2]2] [crystal system tetragonal, space group P4(2)/n (No. 86), a = b = 10.5050(10) A, c = 15.916(3) A] and (Ph3PCH2CO2Me)[PtCl3(NCMe)] [crystal system orthorhombic, space group Pna2(1) (No. 33), a = 19.661(7) A, b = 12.486(4) A, c = 10.149(3) A]. The reaction is also extended to a variety of other Pt(II)/Pt(IV) couples, and the ylides Ph3P=CHCO2R are introduced as mild and selective reducing agents of wide applicability for the conversion of Pt(IV) to Pt(II) species in nonaqueous media, a route that is especially useful in the case of compounds that cannot be prepared directly from Pt(II) precursors, and for the generation of systematic series of Pt(II)/Pt(IV) complexes for biological studies.  相似文献   

5.
The complexes [Pt[(CH2)4](NN)], 1a (NN = 2,2'-bipyridine) and 1b (NN = 1,10-phenanthroline) react with 2,3-epoxypropylphenyl ether in the presence of CO2 to give tris-chelate platina(IV)cyclopentane complexes characterized by 1H and 13C NMR spectroscopy as [Pt[(CH2)4](CH2CHCH2OPhOCO2)(NN)], 2. The reactions proceed by the SN2 mechanism and the rates were independent of concentration of CO2. It is demonstrated that for 1a, the reaction proceeds 2.32 times faster than the similar reaction in which the dimethyl analog, [PtMe2(2,2'-bipyridine)], is used. The analog tris-chelate complex [Pt[(CH2)4](CH2CHPhOCO2)(phen)], 3a, was similarly synthesized.  相似文献   

6.
The relative rates of C-H activation of methane, methanol, and dimethyl ether by [(N-N)PtMe(TFE-d(3))](+) ((N-N) = ArN=C(Me)-C(Me)=NAr; Ar = 3,5-di-tert-butylphenyl, TFE-d(3) = CF(3)CD(2)OD) (2(TFE)) were determined. Methane activation kinetics were conducted by reacting 2(TFE)-(13)C with 300-1000 psi of methane in single-crystal sapphire NMR tubes; clean second-order behavior was obtained (k = 1.6 +/- 0.4 x 10(-3) M(-1) s(-1) at 330 K; k = 2.7 +/- 0.2 x 10(-4) M(-1) s(-1) at 313 K). Addition of methanol to solutions of 2(TFE) rapidly establishes equilibrium between methanol (2(MeOD)) and trifluoroethanol (2(TFE)) adducts, with methanol binding preferentially (K(eq) = 0.0042 +/- 0.0006). C-H activation gives [(N-N)Pt(CH(2)OD)(MeOD)](+) (4), which is unstable and reacts with [(RO)B(C(6)F(5))(3)](-) to generate a pentafluorophenyl platinum complex. Analysis of kinetics data for reaction of 2 with methanol yields k = 2.0 +/- 0.2 x 10(-3) M(-1) s(-1) at 330 K, with a small kinetic isotope effect (k(H)/k(D) = 1.4 +/- 0.1). Reaction of dimethyl ether with 2(TFE) proceeds similarly (K(eq) = 0.023 +/- 0.002, 313 K; k = 5.5 +/- 0.5 x 10(-4) M(-1) s(-1), k(H)/k(D) = 1.5 +/- 0.1); the product obtained is a novel bis(alkylidene)-bridged platinum dimer, [(diimine)Pt(mu-CH(2))(mu-(CH(OCH(3)))Pt(diimine)](2+) (5). Displacement of TFE by a C-H bond appears to be the rate-determining step for all three substrates; comparison of the second-order rate constants (k((methane))/k((methanol)) = 1/1.3, 330 K; k((methane))/k((dimethy)(l e)(ther)) = 1/2.0, 313 K) shows that this step is relatively unselective for the C-H bonds of methane, methanol, or dimethyl ether. This low selectivity agrees with previous estimates for oxidations with aqueous tetrachloroplatinate(II)/hexachloroplatinate(IV), suggesting a similar rate-determining step for those reactions.  相似文献   

7.
The reaction of [MCl2(NCMe)2] (M = Pd or Pt) with 2 molar equiv of MeC(CH2ER)3 (E = Se, R = Me; E = Te, R = Me or Ph) and 2 molar equiv of TlPF6 affords the bis ligand complexes [M(MeC(CH2ER)3)2][PF6]2. The crystal structure of [Pt(MeC(CH2SeMe)3)2][PF6]2 (C16H36F12P2PtSe6, a = 12.272(10) A, b = 18.563(9) A, c = 15.285(7) A, beta = 113.18(3) degrees, monoclinic, P2(1)/n, Z = 4) confirms distorted square planar Se4 coordination at Pt(II), derived from two bidentate tripod selenoethers with the remaining arm not coordinated and directed away from the metal center. Solution NMR studies indicate that these species are fluxional and that the telluroether complexes are rather unstable in solution. The octahedral bis tripod complexes [Ru(MeC(CH2SMe)3)2][CF3-SO3]2 and [Ru(MeC(CH2TePh)3)2][CF3SO3]2 are obtained from [Ru(dmf)6][CF3SO3]3 and tripod ligand in EtOH solution. The thioether complex (C18H36F6O6RuS8, a = 8.658(3) A, b = 11.533(3) A, c = 8.659(2) A, alpha = 108.33(2) degrees, beta = 91.53(3) degrees, gamma = 106.01(2) degrees, triclinic, P1, Z = 1) is isostructural with its selenoether analogue, involving two facially coordinated trithioether ligands in the syn configuration. NMR spectroscopy confirms that this configuration is retained in solution for all of the bis tripod Ru(II) complexes. These low-spin d6 complexes show unusually high ligand field splittings. The hexaselenoether Rh(III) complex [Rh(MeC(CH2SeMe)3)2][PF6]3 was obtained by treatment of [Rh(H2O)6]3+ with 2 molar equiv of MeC(CH2SeMe)3 in aqueous MeOH in the presence of excess PF6- anion, while the iridium(III) analogue [Ir(MeC(CH2SeMe)3)2][PF6]3 was obtained via the reaction of the Ir(I) precursor [IrCl(C8H14)2]2 with the selenoether tripod in MeOH/aqueous HBF4. NMR studies reveal different invertomers in solution for both the Rh and Ir species. The Cu(I) complexes [Cu(MeC(CH2ER)3)2]PF6 were obtained from [Cu(NCMe)4]PF6 and tripod ligand in CH2Cl2 solution. The corresponding Ag(I) species [Ag(MeC(CH2TeR)3)2]CF3SO3 (R = Me or Ph) were obtained from Ag[CF3SO3] and tripod telluroether. In contrast, a similar reaction with 2 molar equiv of MeC(CH2SeMe)3 afforded only the 1:1 complex [Ag(MeC(CH2SeMe)3)]CF3SO3. The structure of this species (C9H18AgF3O3SSe3, a = 8.120(3) A, b = 15.374(3) A, c = 14.071(2) A, beta = 93.86(2) degrees, monoclinic, P2(1)/n, Z = 4) reveals a distorted trigonal planar geometry at Ag(I) derived from one bidentate selenoether and one monodentate selenoether. These units are then linked to adjacent Ag(I) ions to give a one-dimensional linear chain cation.  相似文献   

8.
A significant activation of the Ctbd1;N group in organonitriles upon their coordination to a platinum(IV) center has been found in the reaction of [PtCl(4)(RCN)(2)] (R = Me, Et, CH(2)Ph) with the nitrile oxides 2,4,6-R'(3)C(6)H(2)CNO (R' = Me, OMe) to give the (1,2,4-oxadiazole)platinum(IV) complexes (R = Me, R' = Me (1); R = Et, R' = Me (2); R = Et, R' = OMe (3); R = CH(2)Ph, R' = Me (4)); the [2 + 3] cycloaddition was performed under mild conditions (unless poor solubility of [PtCl(4)(RCN)(2)] precludes the reaction) starting even from complexed acetonitrile and propionitrile, which exhibit low reactivity in the free state. The reaction between complexes 2-4 and 1 equiv of Ph(3)P=CHCO(2)Me in CH(2)Cl(2) leads to the appropriate platinum(II) complexes (5-7); the reduction failed only in the case of 1 insofar as this complex is insoluble in the most common organic solvents. All the platinum compounds were characterized by elemental analyses, FAB mass spectrometry, and IR and (1)H, (13)C((1)H), and (195)Pt NMR spectroscopies, and three of them also by X-ray crystallography. The oxadiazoles formed in the course of the metal-mediated reaction were liberated almost quantitatively from their Pt(IV) complexes by reaction of the latter (complexes 2-4) with an excess of pyridine in chloroform, giving free 1,2,4-oxadiazoles and trans-[PtCl(4)(pyridine)(2)]; the sequence of the Pt(IV)-mediated [2 + 3] cycloaddition and the liberation opens up an alternative route for the preparation of this important class of heterocycles.  相似文献   

9.
The mechanism and kinetics of the solvolysis of complexes of the type [(L-L)Pd(C(O)CH(3))(S)](+)[CF(3)SO(3)](-) (L-L = diphosphine ligand, S = solvent, CO, or donor atom in the ligand backbone) was studied by NMR and UV-vis spectroscopy with the use of the ligands a-j: SPANphos (a), dtbpf (b), Xantphos (c), dippf (d), DPEphos (e), dtbpx (f), dppf (g), dppp (h), calix-6-diphosphite (j). Acetyl palladium complexes containing trans-coordinating ligands that resist cis coordination (SPANphos, dtbpf) showed no methanolysis. Trans complexes that can undergo isomerization to the cis analogue (Xantphos, dippf, DPEphos) showed methanolyis of the acyl group at a moderate rate. The reaction of [trans-(DPEphos)Pd(C(O)CH(3))](+)[CF(3)SO(3)](-) (2e) with methanol shows a large negative entropy of activation. Cis complexes underwent competing decarbonylation and methanolysis with the exception of 2j, [cis-(calix-diphosphite)Pd(C(O)CH(3))(CD(3)OD)](+)[CF(3)SO(3)](-). The calix-6-diphosphite complex showed a large positive entropy of activation. It is concluded that ester elimination from acylpalladium complexes with alcohols requires cis geometry of the acyl group and coordinating alcohol. The reductive elimination of methyl acetate is described as a migratory elimination or a 1,2-shift of the alkoxy group from palladium to the acyl carbon atom. Cis complexes with bulky ligands such as dtbpx undergo an extremely fast methanolysis. An increasing steric bulk of the ligand favors the formation of methyl propanoate relative to the insertion of ethene leading to formation of oligomers or polymers in the catalytic reaction of ethene, carbon monoxide, and methanol.  相似文献   

10.
A new series of Fe(II) complexes, FeCl2[N(R)=C(Me)C(Me)=N(R)], containing diimine ligands with hemilabile sidearms R (R = CH2(CH2)2NMe2, 1, CH2(CH2)2OMe, 2, CH2(CH2)2SMe), 3) were synthesized. The crystal structure of 1 showed 6-coordination where both amine arms were attached, whereas 2 was a 5-coordinate 16e species with one methoxy arm dangling free. Extensive attempts were made to bind CO to these species to synthesize precursors for dihydrogen complexes but were unsuccessful. Reaction of 1 with 1 or 2 equiv of AgOTf under CO atmosphere resulted in isolation of only a 6-coordinate bis(triflate)-containing product [Fe[N(R)=C(Me)C(Me)=N(R)](OTf)2] (R = CH2(CH2)2NMe2), 5. Reaction of 5-coordinate 2 with AgSbF6 under CO did not give a CO adduct but afforded instead a dicationic dinuclear complex [Fe[N(R)=C(Me)C(Me)=N(R)](mu-Cl)]2[SbF6]2 (R = CH2(CH2)2OMe), 4, containing a weakly bound SbF6. Thus coordination of hard-donor anions to iron was favored over CO binding. The unexpected rejection of binding of CO is rationalized by the iron being in a high-spin state in this system and energetically incapable of spin crossover to a low-spin state. Theoretical calculations on CO interaction with Fe(II) centers in spin states S = 0, 1, and 2 for both the 16e complexes and their CO adducts aid further understanding of this problem. They show that interaction of CO with a high-spin 5-coordinate Fe model diimine complex is essentially thermoneutral but is exergonic by about 48 kcal/mol to a comparable but low-spin diphosphine fragment. Spin crossover is thus disfavored thermodynamically rather than kinetically (e.g. a "spin block" effect); i.e., the ligand field strengths of the primarily N-donor groups are apparently insufficient to give a low-spin CO adduct.  相似文献   

11.
The tailoring reaction of the two adjacent nitrile ligands in cis-[PtCl(2)(RCN)(2)] (R = Me, Et, CH(2)Ph, Ph) and [Pt(tmeda)(EtCN)(2)][SO(3)CF(3)](2) (8.(OTf)(2); tmeda = N,N,N',N'-tetramethylethylenediamine) upon their interplay with N,N'-diphenylguanidine (DPG; NH=C(NHPh)(2)), in a 1:2 molar ratio gives the 1,3,5-triazapentadiene complexes [PtCl(2){NHC(R)NHC(R)=NH}] (1-4) and [Pt(tmeda){NHC(Et)NHC(Et)NH}][SO(3)CF(3)](2) (10.(OTf)(2)), respectively. In contrast to the reaction of 8.(OTf)(2) with NH=C(NHPh)(2), interaction of 8.(OTf)(2) with excess gaseous NH(3) leads to formation of the platinum(II) bis(amidine) complex cis-[Pt(tmeda){NH=C(NH(2))Et}(2)][SO(3)CF(3)](2) (9.(OTf)(2)). Treatment of trans-[PtCl(2)(RCN)(2)] (R = Et, CH(2)Ph, Ph) with 2 equiv of NH=C(NHPh)(2) in EtCN (R = Et) and CH(2)Cl(2) (R = CH(2)Ph, Ph) solutions at 20-25 degrees C leads to [PtCl{NH=C(R)NC(NHPh)=NPh}(RCN)] (11-13). When any of the trans-[PtCl(2)(RCN)(2)] (R = Et, CH(2)Ph, Ph) complexes reacts in the corresponding nitrile RCN with 4 equiv of DPG at prolonged reaction time (75 degrees C, 1-2 days), complexes containing two bidentate 1,3,5-triazapentadiene ligands, i.e. [Pt{NH=C(R)NC(NHPh)=NPh}(2)] (14-16), are formed. Complexes 14-16 exhibit strong phosphorescence in the solid state, with quantum yields (peak wavelengths) of 0.39 (530 nm), 0.61 (460 nm), and 0.74 (530 nm), respectively. The formulation of the obtained complexes was supported by satisfactory C, H, and N elemental analyses, in agreement with FAB-MS, ESI-MS, IR, and (1)H and (13)C{(1)H} NMR spectra. The structures of 1, 2, 4, 11, 13, 14, 9.(picrate)(2), and 10.(picrate)(2) were determined by single-crystal X-ray diffraction.  相似文献   

12.
The monomeric metallocenecerium hydride, Cp'(2)CeH (Cp' = 1,2,4-tri-tert-butylcyclopentadienyl), reacts instantaneously with CH(3)F, but slower with CH(2)F(2), to give Cp'(2)CeF and CH(4) in each case, a net H for F exchange reaction. The hydride reacts very slowly with CHF(3), and not at all with CF(4), to give Cp'(2)CeF, H(2), and 1,2,4- and 1,3,5-tri-tert-butylbenzene. The substituted benzenes are postulated to result from trapping of a fluorocarbene fragment derived by alpha-fluoride abstraction from Cp'(2)CeCF(3). The fluoroalkyl, Cp'(2)CeCF(3), is generated by reaction of Cp'(2)CeH and Me(3)SiCF(3) or by reaction of the metallacycle, [(Cp')(Me(3)C)(2)C(5)H(2)C(Me(2))CH(2)]Ce, with CHF(3), and its existence is inferred from the products of decomposition, which are Cp'(2)CeF, the isomeric tri-tert-butylbenzenes and in the case of Me(3)SiCF(3), Me(3)SiH. The fluoroalkyls, Cp'(2)CeCH(2)F and Cp'(2)CeCHF(2), generated from the metallacycle and CH(3)F and CH(2)F(2), respectively, are also inferred by their decomposition products, which are Cp'(2)CeF, CH(2), and CHF, respectively, which are trapped. DFT(B3PW91) calculations have been carried out to examine several reaction paths that involve CH and CF bond activation. The calculations show that the CH activation by Cp(2)CeH proceeds with a low barrier. The carbene ejection and trapping by H(2) is the rate-determining step, and the barrier parallels that found for reaction of H(2) with CH(2), CHF, and CF(2). The barrier of the rate-determining step is raised as the number of fluorines increases, while that of the CH activation path is lowered as the number of fluorines increases, which parallels the acidity.  相似文献   

13.
New five-coordinate Pt(IV) complexes [{(o-R2-p-R'-C6H2)NC(R' ')}2CH]PtMe3 (R, R', R' ' = alkyl or H) are reported. The complex with R = Me, R' = tBu, R' ' = Me generates unsaturated Pt(II) species capable of alkane C-H bond activation and stoichiometric dehydrogenation.  相似文献   

14.
The metal-mediated coupling between coordinated EtCN in the platinum(II) and platinum(IV) complexes cis- and trans-[PtCl(2)(EtCN)(2)], trans-[PtCl(4)(EtCN)(2)], a mixture of cis/trans-[PtCl(4)(EtCN)(2)] or [Ph(3)PCH(2)Ph][PtCl(n)(EtCN)] (n = 3, 5), and dialkyl- and dibenzylhydroxylamines R(2)NOH (R = Me, Et, CH(2)Ph, CH(2)C(6)H(4)Cl-p) proceeds smoothly in CH(2)Cl(2) at 20-25 degrees C and the subsequent workup allowed the isolation of new imino species [PtCl(n){NH=C(Et)ONR(2)}(2)] (n = 2, R = Me, cis-1 and trans-1; Et, cis-2 and trans-2; CH(2)Ph, cis-3 and trans-3; CH(2)C(6)H(4)Cl-p, cis-4 and trans-4; n = 4, R = Me, trans-9; Et, trans-10; CH(2)Ph, trans-11; CH(2)C(6)H(4)Cl-p, trans-12) or [Ph(3)PCH(2)Ph][PtCl(n){NH=C(Et)ONR(2)}] (n = 3, R = Me, 5; Et, 6; CH(2)Ph, 7; CH(2)C(6)H(4)Cl-p, 8; n = 5, R = Me, 13; Et, 14; CH(2)Ph, 15; CH(2)C(6)H(4)Cl-p, 16) in excellent to good (95-80%) isolated yields. The reduction of the Pt(IV) complexes 9-16 with the ylide Ph(3)P=CHCO(2)Me allows the synthesis of Pt(II) species 1-8. The compounds 1-16 were characterized by elemental analyses (C, H, N), FAB-MS, IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR (the latter for the anionic type complexes 5-8 and 13-16) and by X-ray crystallography for the Pt(II) (cis-1, cis-2, and trans-4) and Pt(IV) (15) species. Kinetic studies of addition of R(2)NOH (R = CH(2)C(6)H(4)Cl-p) to complexes [Ph(3)PCH(2)Ph][Pt(II)Cl(3)(EtCN)] and [Ph(3)PCH(2)Ph][Pt(IV)Cl(5)(EtCN)] by the (1)H NMR technique revealed that both reactions are first order in (p-ClC(6)H(4)CH(2))(2)NOH and Pt(II) or Pt(IV) complex, the second-order rate constant k(2) being three orders of magnitude larger for the Pt(IV) complex. The reactions are intermolecular in nature as proved by the independence of k(2) on the concentrations of added EtC triple bond N and Cl(-). These data and the calculated values of Delta H++ and Delta S++ are consistent with the mechanism involving the rate-limiting nucleophilic attack of the oxygen of (p-ClC(6)H(4)CH(2))(2)NOH at the sp-carbon of the C triple bond N bond followed by a fast proton migration.  相似文献   

15.
The planar Pt(II) monomers [PtMe2(L-L)] and [(PtMe2)2(L'-L')2] dimers (L-L = R2Sb(CH2)3SbR2, o-C6H4(CH2SbMe2)2; L'-L' = R2SbCH2SbR2; R = Me or Ph) are obtained in good yield via reaction of [PtMe2(SMe2)2] with L-L or L'-L' in benzene. The Pt(iv) stibines, [PtMe3(L-L)I] (L-L = R2Sb(CH2)3SbR2, o-C6H4(CH2SbMe2)2 or 2 x SbPh3, SbMePh2 or SbMe2Ph) are obtained by treatment of [PtMe3I] with L-L in chloroform. These represent the first series of stable Pt(IV) stibine complexes. All of the products have been characterised by 1H, 13C{1H}, 195Pt NMR spectroscopy, electrospray mass spectrometry and analysis. Crystal structure determinations on [PtMe3{R2Sb(CH2)3SbR2}I], [PtMe3{o-C6H4(CH2SbMe2)2}I] and [PtMe3(SbPh3)2I] confirm the distorted octahedral environment at Pt, with fac Me groups and mutually cis Sb donor atoms. The Sb-Pt-Sb angle in the seven-membered chelate ring of the o-C6H4(CH2SbMe2)2 complex is ca. 96 degrees , compared to <90 degrees in the complexes with six-membered chelates. The C1-distibines R2SbCH2SbR2 afford only the dinuclear [(PtMe3)2(mu-R2SbCH2SbR2)(mu-I)2] in which the stibine ligand and two I atoms bridge two Pt atoms giving an edge sharing bioctahedral geometry which has been confirmed by a crystal structure analysis. The Pt(II) species undergo oxidative addition with MeI to give the corresponding Pt(IV) species, while the Pt(IV) species reductively eliminate ethane upon thermolysis.  相似文献   

16.
New catalysts for the isospecific polymerization of 1-hexene based on cationic zirconium complexes incorporating the tetradentate fluorous dialkoxy-diamino ligands [OC(CF(3))(2)CH(2)N(Me)(CH(2))(2)N(Me)CH(2)C(CF(3))(2)O](2-) [(ON(2)NO)(2-)] and [OC(CF(3))(2)CH(2)N(Me)(1R,2R-C(6)H(10))N(Me)CH(2)C(CF(3))(2)O](2-) [(ON(Cy)NO)(2-)] have been developed. The chiral fluorous diamino-diol [(ON(Cy)NO)H(2), 2] was prepared by ring-opening of the fluorinated oxirane (CF(3))(2)COCH(2) with (R,R)-N,N'-dimethyl-1,2-cyclohexanediamine. Proligand 2 reacts cleanly with [Zr(CH(2)Ph)(4)] and [Ti(OiPr)(4)] precursors to give the corresponding dialkoxy complexes [Zr(CH(2)Ph)(2)(ON(Cy)NO)] (3) and [Ti(OiPr)(2)(ON(Cy)NO)] (4), respectively. An X-ray diffraction study revealed that 3 crystallizes as a 1:1 mixture of two diastereomers (Lambda-3 and Delta-3), both of which adopt a distorted octahedral structure with trans-O, cis-N, and cis-CH(2)Ph ligands. The two diastereomers Lambda-3 and Delta-3 adopt a C(2)-symmetric structure in toluene solution, as established by NMR spectroscopy. Cationic complexes [Zr(CH(2)Ph)(ON(2)NO)(THF)(n)](+) (n=0, anion=[B(C(6)F(5))(4)](-), 5; n=1, anion=[PhCH(2)B(C(6)F(5))(3)](-), 6) and [Zr(CH(2)Ph)(ON(Cy)NO)(THF)](+)[PhCH(2)B(C(6)F(5))(3)](-) (7) were generated from the neutral parent precursors [Zr(CH(2)Ph)(2)(ON(2)NO)] (H) and [Zr(CH(2)Ph)(2)(ON(Cy)NO)] (3), and their possible structures were determined on the basis of (1)H, (19)F, and (13)C NMR spectroscopy and DFT methods. The neutral zirconium complexes H and 3 (Lambda-3/Delta-3 mixture), when activated with B(C(6)F(5))(3) or [Ph(3)C](+)[B(C(6)F(5))(4)](-), catalyze the polymerization of 1-hexene with overall activities of up to 4500 kg PH mol Zr(-1) h(-1), to yield isotactic-enriched (up to 74 % mmmm) polymers with low-to-moderate molecular weights (M(w)=4800-47 200) and monodisperse molecular-weight distributions (M(w)/M(n)=1.17-1.79).  相似文献   

17.
The heterocycles 2-methyl-2-oxazoline (mox) and 2-methyl-2-thiazoline (mth) react with Ph2PCl under mild conditions, in the presence of NEt3 which promotes their phosphorylation by stabilization of their enamino tautomers mox(e) and mth(e), respectively, and which also behaves as HCl scavenger. Depending on the reaction conditions, three different phosphine ligands were obtained in good yields from mox: the monophosphine Ph2PCH2C=NCH2CH2O (1ox) and the isomeric diphosphines Ph2PCH=COCH2CH2NPPh2 (2ox) (X-ray structure) and (Ph2P)2CHC=NCH2CH2O (3ox). The formation of these ligands involves phosphoryl migration reactions, which were studied by NMR spectroscopy. The synthesis and the X-ray structures of the corresponding diphenylphosphinothiazolines Ph2PCH2C=NCH2CH2S (1th) and Ph2CH=CSCH2CH2NPPh2 (2th) are also reported but the thiazoline analog of the geminal diphosphine 3ox was not observed. The metal complexes [Pt(3ox-H)2] x 4 CH2Cl2 (4 x 4 CH2Cl2), [Pt(Me)I(1ox)] (5), [Pt(Me)2(1ox)] (7), [Pd(dmba-C,N)(1th)]OTf x 0.25 Et2O (8 x 0.25 Et2O), [Pd(dmba-C,N)(1th-H)] (9), and [9 x {Pd(dmba-C,N)Cl}] x 2.5 C6H6 (10 x 2.5 C6H6) have been prepared and structurally characterized by X-ray diffraction.  相似文献   

18.
Free nitriles NCCH2R (1a R = CO2Me, 1b R = SO2Ph, and 1c R = COPh) with an acidic alpha-methylene react with acyclic nitrones -O+N(Me)=C(H)R' (2a R' = 4-MeC6H4 and 2b R' = 2,4,6-Me3C6H2), in refluxing CH2Cl2, to afford stereoselectively the E-olefins (NC)(R)C=C(H)R' (3a-3c and 3a'-3c'), whereas, when coordinated at the platinum(II) trans-[PtCl2(NCCH2R)2] complexes (4a R = CO2Me and 4b R = Cl), they undergo cycloaddition to give the (oxadiazoline)-PtII complexes trans-[PtCl2{N=C(CH2R)ON(Me)C(H)R'}2] (R = CO2Me, Cl and R' = 4-MeC6H4, 2,4,6-Me3C6H2) (5a-5d). Upon heating in CH2Cl2, 5a affords the corresponding alkene 3a. The reactions are greatly accelerated when carried out under focused microwave irradiation, particularly in the solid phase (SiO2), without solvent, a substantial increase of the yields being also observed. The compounds were characterized by IR and 1H, 13C, and 195Pt NMR spectroscopies, FAB+-MS, elemental analyses and, in the cases of the alkene (NC)(CO2Me)C=C(H)(4-MeC6H4) 3a and of the oxadiazoline complex trans-[PtCl2{N=C(CH2Cl)ON(Me)C(H)(4-C6H4Me)}2] 5c, also by X-ray diffraction analyses.  相似文献   

19.
[reaction: see text] 1,3-Dipolar cycloaddition of the cyclic nitrones CH2(CH2)2CH=NO (N1), CH2CH2OCH=NO (N2), CH2-OCH2CH=NO (N3), and O(CH2)2CH=NO (N4) to organonitriles, RCN-both free (R = CH(3), CF(3)) and ligated to Pt(II) and Pt(IV) (in the complexes trans-[PtCl(2)(NCCH(3))(2)] (1) and trans-[PtCl(4)(NCCH(3))(2)] (2))-was investigated extensively by theoretical methods at different levels of theory. The effectiveness of two types of dipolarophile activation (by introducing a strong electron-acceptor group R and by coordination to a metal center) was analyzed and compared. The influence of factors such as the nature of the cyclic nitrone and the nature of the solvent on the reactions was also studied. The reactivity of dipoles and dipolarophiles increases along the series N4 < N1 approximately N3 < N2 and CH(3)CN < CF(3)CN < 1 < 2; the latter demonstrates that the coordination of RCN to a Pt center provides an even higher activation effect upon cycloaddition in comparison with the introduction of a strong electron-acceptor group R such as CF(3). A higher reactivity of the cyclic dipole N1 in comparison with acyclic nitrones (e.g., CH(3)CH=N(CH(3))O) is interpreted to be a result of its exclusive existence in a more strained and hence more reactive E- rather than Z-configuration. The activation and reaction energies have been calculated at different basis sets and levels of theory, up to MP4(SDTQ), CCSD(T), and CBS-Q. The activation energies are weakly sensitive to a change of the correlated methods. The consideration of the solvent effects results in the increase of the activation barriers, and such enhancement is less pronounced for the nonpolar or low polar solvents. The cycloadditions to CH(3)CN and CF(3)CN were found to be nearly synchronous, but these reactions involving 1 and 2 are clearly asynchronous. Moreover, the reaction of N2 with 2 proceeds via a very early acyclic transition state, while for all other reactions the transition states have a cyclic nature.  相似文献   

20.
The crystalline compounds [Mg(Br)(L)(thf)].0.5Et2O [L = {N(R)C(C6H3Me2-2,6)}2SiR, R = SiMe3] (1), [Mg(L){N=C=C(C(Me)=CH)2CH2}(D)2] [D = NCC6H3Me2-2,6 (2), thf (3)] and [{Mg(L)}2{mu-OSO(CF3)O-[mu}2] (4) were prepared from (a) Si(Br)(R){C(C6H3Me2-2,6)=NR}2 and Mg for (1), (b) [Mg(SiR3)2(thf)2] and 2,6-Me2C6H3CN (5 mol for (2), 3 mol for (3)), and (c) (2) + Me3SiOS(O)2CF3 for (4); a coproduct from (c) is believed to have been the trimethylsilyl ketenimide Me3SiN=C=C{C(Me)=CH}2CH2 (5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号